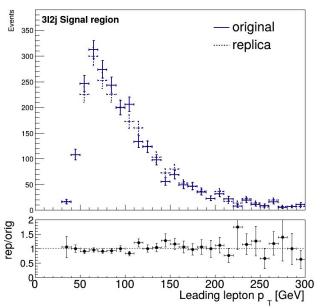
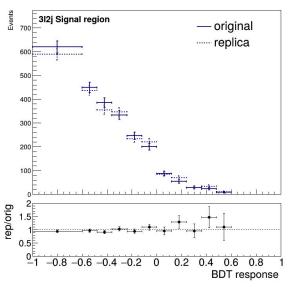
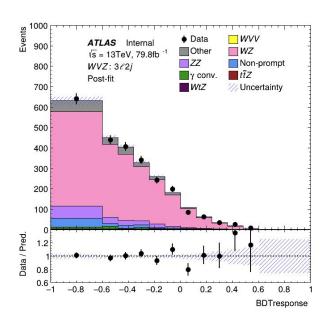


Лаборатория анализа данных физики высоких энергий

Томского государственного университета

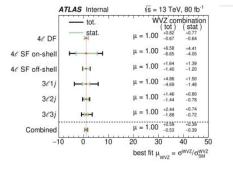

Физический анализ данных

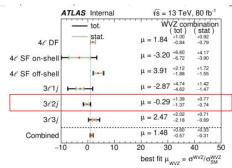

Томский Государственный Университет

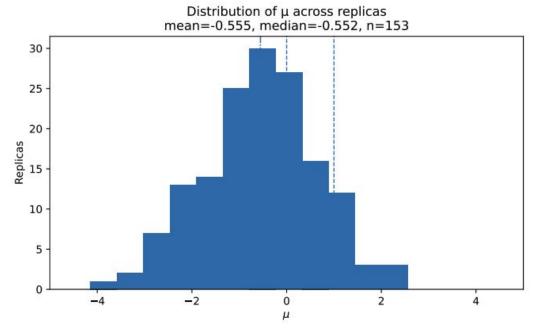

Мария Диденко

Distribution of variables: signal region

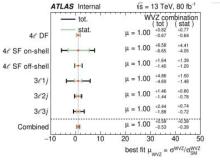
- 3l2j SR selection is applied
- Events after SR selection: orig=2438, repl=2407
- The shapes agree within statistical fluctuations (ratio plot: replica/original $\approx 1 \pm \text{stat}$)

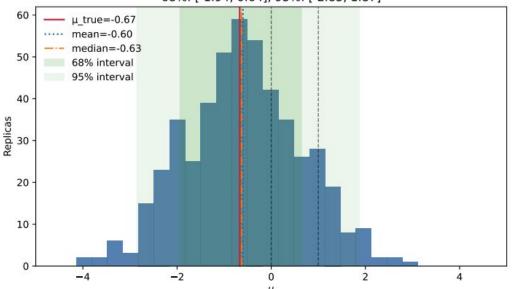


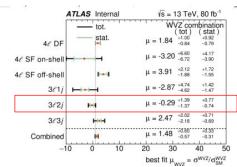




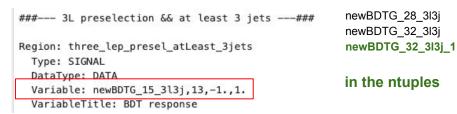
μ distribution

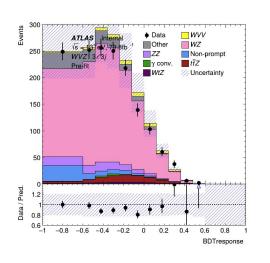

Most of tasks are still running Checked 153 tasks

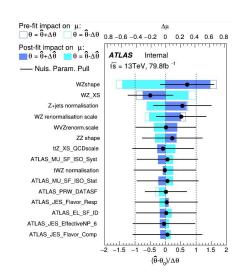


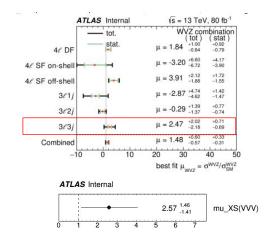


 μ distribution

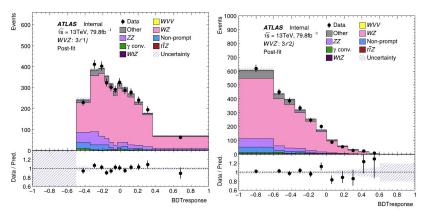

Distribution of μ across replicas mean=-0.60, median=-0.63, σ =1.23, var=1.51, n=486 68%: [-1.94, 0.64], 95%: [-2.85, 1.87]

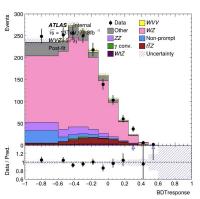



Leptons + at least 3 jets (real data)


- Checked the remaining 3ℓ + ≥3j region using real data.
- In the configuration file, the variable newBDTG_15_313j
 was specified, but it was missing in the ntuples.
- Used newBDTG_32_313j_1 from the ntuples instead.
- The obtained signal strength ($\mu = 2.57$) is close to the reference value ($\mu = 2.47$)

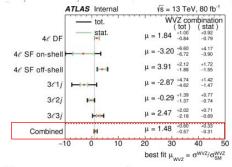
in the config

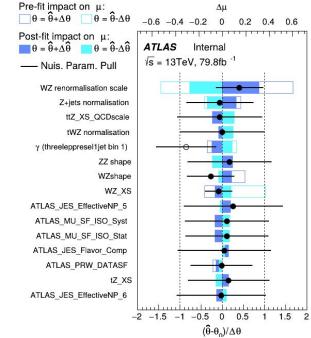




Combined regions (real data)

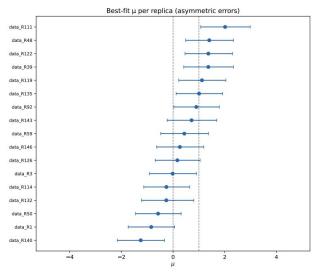
- Combined results from three regions: 3ℓ + 1j, 3ℓ + 2j, and 3ℓ + ≥3j.
- Used real data to verify consistency of the combined fit.
- The **post-fit BDT distributions** (bottom plots) show good agreement between data and prediction across all regions.
- The obtained combined signal strength is $\mu = 0.52$, while the reference value reported in the publication is $\mu = 1.48$:
 - The difference mainly comes from the 3ℓ + 2j region:
 - -0.67 vs -0.29

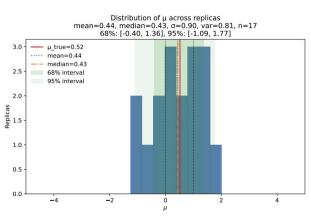

ATLAS Internal

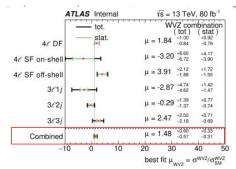

0.5

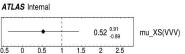
0.52 0.91

2


mu XS(VVV)



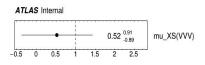



Combined regions (replicas)

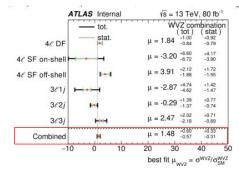
- Many replicas fail during generation, when TRExFitter tries to run all options simultaneously (nwfsdpr).
- Currently, I'm running one option at a time (n), and then plan to process the remaining ones.
- So far, 17 replicas have been successfully generated.
- The distribution of μ is close to the original result (μ = 0.52),
 but more statistics are needed to confirm the stability of the result.

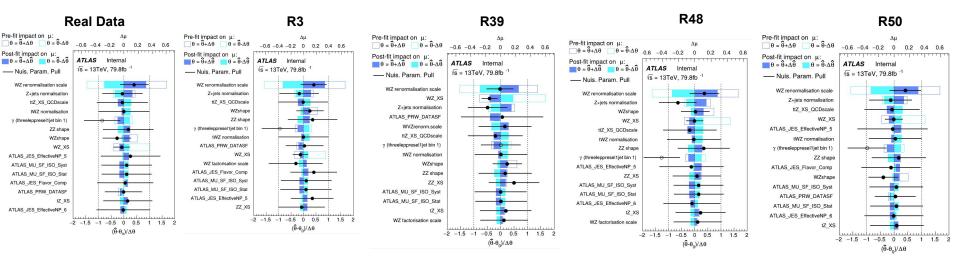
Replicas: 17

μ mean: **0.4429**, median: 0.4341, std: 0.9023 Avg errUp: 0.9335, Avg |errDown|: 0.9045


-- vs μ_true=0.52 --Bias : -0.07706 RMSE : 0.8787

Std/Var : 0.9023 / 0.8141


Replicas coverage 68%: 76.5% Replicas coverage 95%: 100.0%


Global 68% CI [-0.402, 1.36] => hit? True Global 95% CI [-1.09, 1.77] => hit? True

Combined regions (replicas)

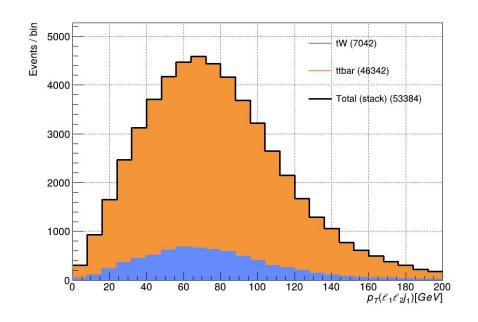
Each replica includes random statistical variations in data, which slightly change the fitted nuisance parameters and their impact on μ .

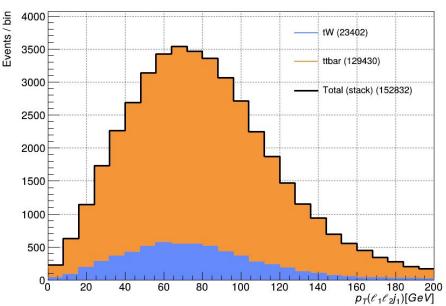
HEP data

Measurement of the total and differential cross-sections of ttW production: a good starting point

- Ready bootstrap replicas already included in the workspace
- Working fitting scripts available
- Regularization disabled, fitting launched (XRooFit)
 evaluate the statistical variation of the data
- Running 1000 replicas: in progress 🔀

Fit results (without regularization):

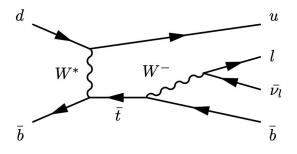

- NLL: 454.056
- Norm_ttW = 1.1393 ± 0.0932

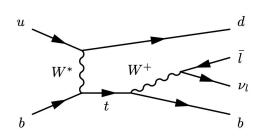

Measurement of t-channel production of single top quarks and antiquarks

- JSON file with data: understanding of its structure is required (or conversion JSON → ROOT workspace)
- Several fitting options available: PyHF or TRExFitter
- repeating the ttW structure: conversion JSON → YAML workspace

BDT ntuples

Additionally: the ntuples for the BDT are ready, and the statistics have been increased by a factor of three.




16.12.2025

Мария Диденко 09-12-2025 10

tW analysis overview

- This analysis uses 140 fb⁻¹ of ATLAS 13 TeV data to measure the production cross-sections of tW processes separately for $tq \to tW^+$ and $t\overline{q} \to tW^-$ final states.
 - The separate measurements provide enhanced sensitivity to the u- and d-quark PDFs, since the dominant initial states differ for tW^+ (u \rightarrow d transition) and tW^- (d \rightarrow u transition).
- Events are selected in the single-lepton final state with one charged lepton, MET, and b-tagged jets.
- A neural network (NN) is trained to distinguish tW signal from background using event-level kinematic variables.
- The NN output distribution is then used as the discriminant in a profile likelihood fit.

Region strategy

Two complementary signal regions tailored to the angular correlation between the lepton and the b-jet:

- SR-plus (SRp): Events where the lepton and the b-jet are preferentially aligned (sensitive to tW⁺ production).
- SR-minus (SRn): Events with opposite angular correlation (sensitive to tW-production).

This separation increases PDF sensitivity and improves constraints on the signal model.

Main Background Processes

- **tf (top-antitop):** dominant background in single-lepton, b-jet final states.
- Single top (tW, t-channel): important and must be modelled accurately, especially in 1-b-tag categories.
- W+jets: critical for regions with one lepton and MET.
- Z+jets / Diboson: typically subdominant but included.
- Fake leptons / charge mis-ID: included where relevant.

CR name	Requirement		
B-e-plus	$q_e/e = +1, \eta(e) < 1.37, E_{\rm T}^{\rm miss} < 30{\rm GeV}$		
B-e-minus	$q_e/e = -1, \eta(e) < 1.37, E_{\rm T}^{\rm miss} < 30{\rm GeV}$		
EC-e-plus	$q_e/e = +1, \eta(e) > 1.52, E_{\rm T}^{\rm miss} < 30{\rm GeV}$		
EC-e-minus	$q_e/e = -1, \eta(e) > 1.52, E_{\rm T}^{\rm miss} < 30 {\rm GeV}$		
${\rm CR}\mu ext{-plus}$	$q_{\mu}/e = +1,28\text{GeV} < p_{\text{T}}\left(\mu\right) < 40\text{GeV} \cdot \frac{ \Delta\phi(j_{1},\ell) }{\pi}$		
${ m CR}~\mu$ -minus	$q_{\mu}/e = -1, 28 \mathrm{GeV} < p_{\mathrm{T}}\left(\mu\right) < 40 \mathrm{GeV} \cdot \frac{ \Delta\phi(j_{1},\ell) }{\pi}$		

Table 1: Summary of the definition of the CRs.

6 Control regions

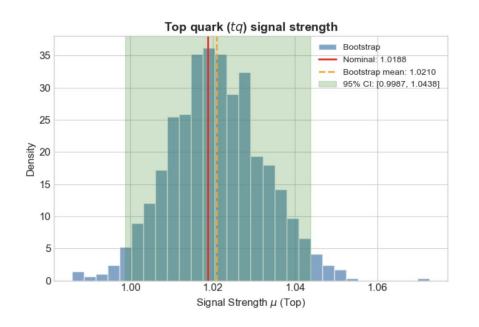
BCCI implementation

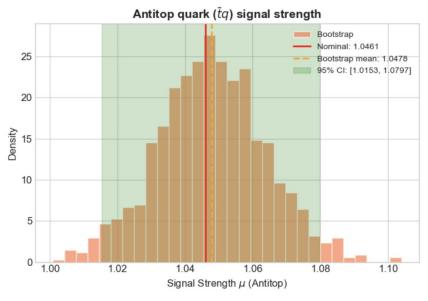
HEPData Record: ins2764820

- workspace.json is a JSON specification of the statistical model.
- 8 channels: signal and control regions:
 SRp, SRn, SRelep, SRelepforw, SRmuonp, SRelen, SRelenforw, SRmuonn
- 44 bins distributed across the 8 channels
- Observed data provided per bin
- Expected model: signal + background + systematics (400+ nuisance parameters)
- Parameter of Interest (POI): negSigXsecOverSM

Full workflow

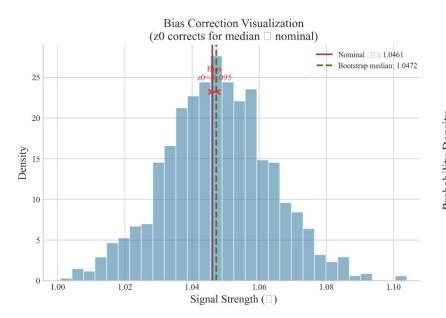
- Load the JSON workspace
- 2. Generate Poisson bootstrap replicas
- 3. Modify the observed data in the workspace
- 4. Build the pyhf statistical model
- 5. Perform a maximum likelihood fit (MLE)
- Extract the POI value and uncertanties
- 7. Repeat the procedure 1000 times
- 8. Compute BC / BCa confidence intervals


From the HEPData workspace (workspace_fixed.json):


Туре	Count	TRexFitter Type	Examples
lumi	1	LUMI	lumi
staterror	8	STATERORR	staterror_SRp
normsys	208	OVERALL	sitop_mur, JET_*
histosys	207	HISTO	weight_bTagSF_*
normfactor	5	NormFactor	negSigXsecOverSM

Total: 429 systematic parameters

BCCI implementation


- Data [n1,n2,n3,...] per bin → varied
- Systematic uncertainties: all normsys, histosys, luminosity, etc. → fixed
- Likelihood model: includes nuisance parameters

BC/BCa implementation

$$\mu_{BC}[lpha] = \hat{G}^{-1}\left(\Phi\left(2\!\!\left(z_0\!\!\right)\!\!+z^{(lpha)}
ight)
ight)$$

Antitop quark (t̄q):

z0 = -0.0954, a = 0.0112

Standard : [1.0166, 1.0790] (width=0.0624)

Percentile : [1.0153, 1.0797] (width=0.0644)

BC : [1.0132, 1.0760] (width=0.0628)

1.06

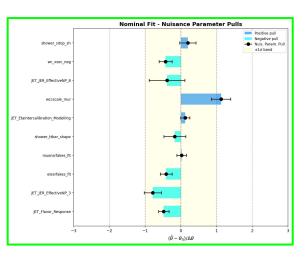
Signal Strength (□)

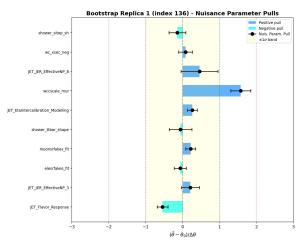
1.08

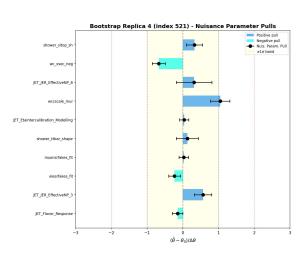
1.10

1.04

(a) Bootstrap Distribution with BCa 95% CI

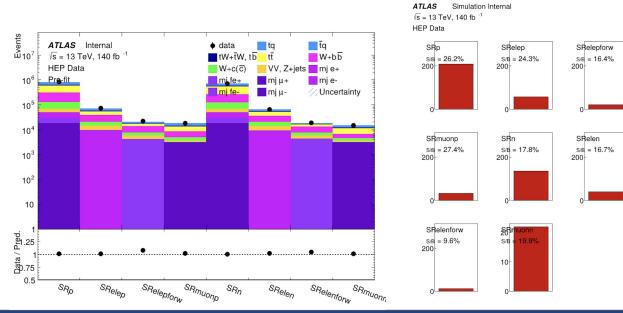

1.02


BCCI implementation


The ranking of nuisance parameters shows a **clear data-dependent behavior** of systematic uncertainties.

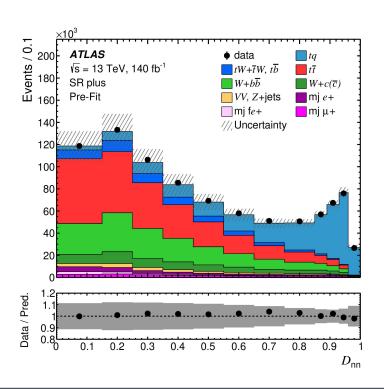
The Jet_JER_Effec... nuisance parameter is particularly sensitive to data fluctuations and may require a more accurate treatment or dedicated validation.

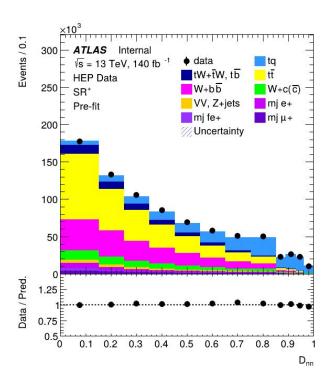
A large fraction of systematic uncertainties shows **negligible impact** on the likelihood and can potentially be **safely neglected** in simplified models.



Trexfitter cross-check

- JSON → ROOT conversion: the converted ROOT file currently contains only histograms, with variable bin widths matching
 the reference.
- TRExFitter setup: The fit was run in StatOnly = TRUE mode, i.e. systematic uncertainties were disabled and only statistical uncertainties were considered.
- Next step: To reproduce the full result, we must include all systematic uncertainties in the workspace (400+ nuisance parameters), i.e. enable normsys, histosys, luminosity, etc., and run the full profile-likelihood fit in TRExFitter.


NUISANCE_PARAMETERS


mu_tbarq: 1.0476 +0.005 -0.005 mu_tq: 1.03865 +0.0035 -0.004

Issue

Different distribution: first and last bins don't show correct number of events.

Мария Диденко 16-12-2025

Thank you!