

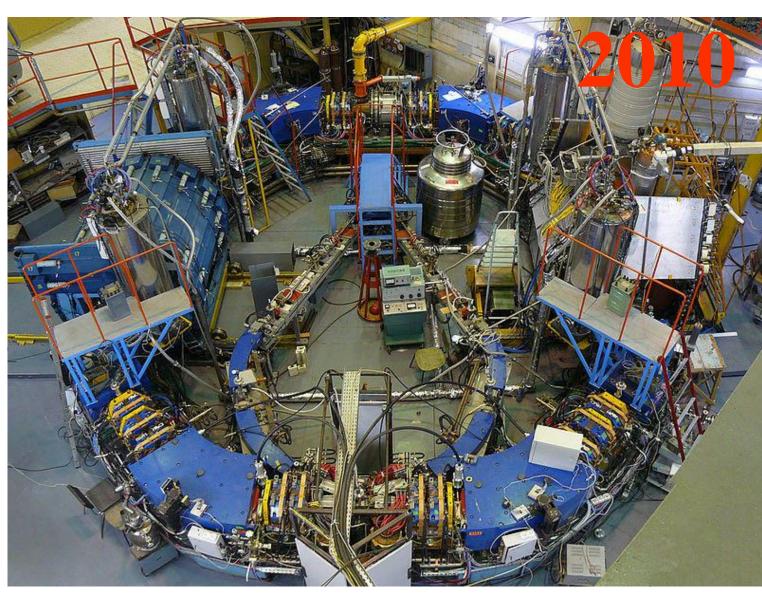
Последние новости с детектора КМД-3 на коллайдере ВЭПП-2000 (ИЯФ СО РАН)

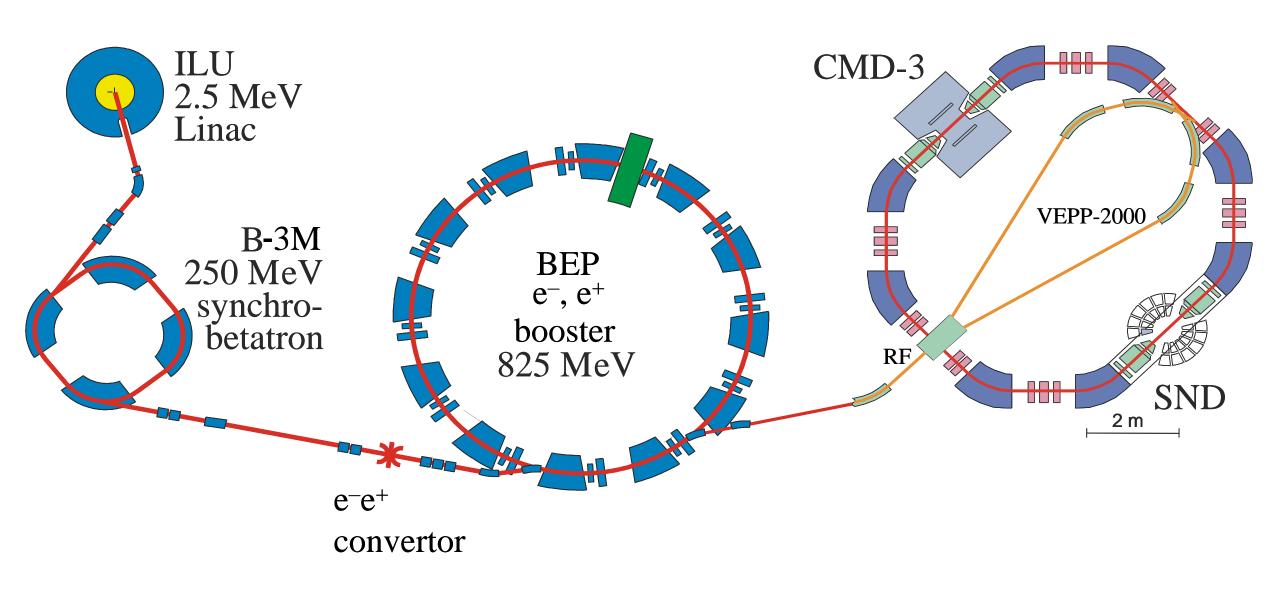
Петр Анатольевич Лукин (Коллаборация КМД-3)

9 октября 2025 года, Томский Государственный

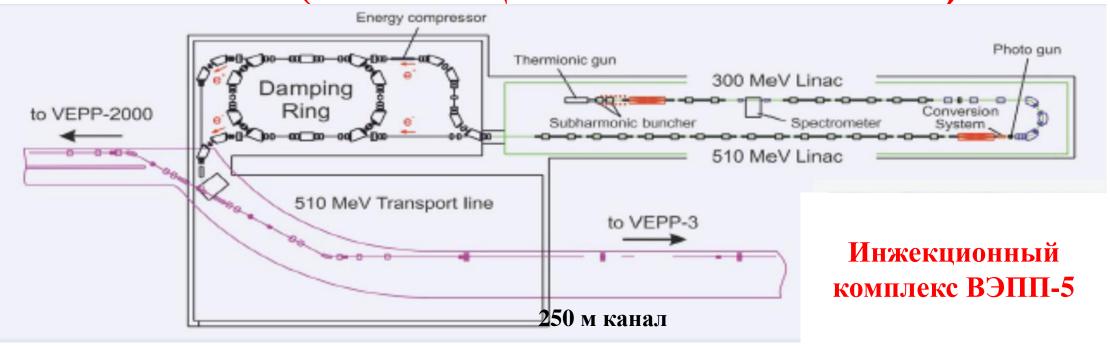
План

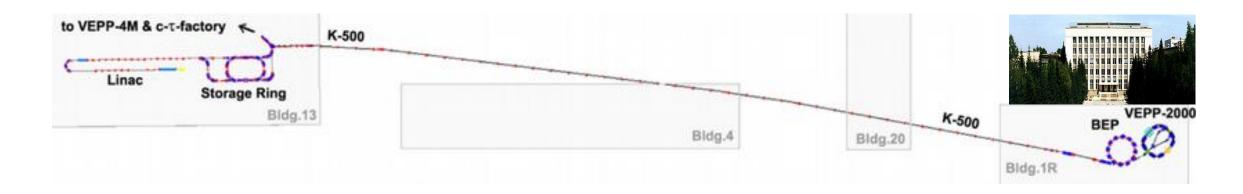
- □ История□ Коллойи
- □ Коллайдер
- **П** Детектор
- □ Эксперимент
- Проект нового коллайдера ИЯФ
- □ Заключение

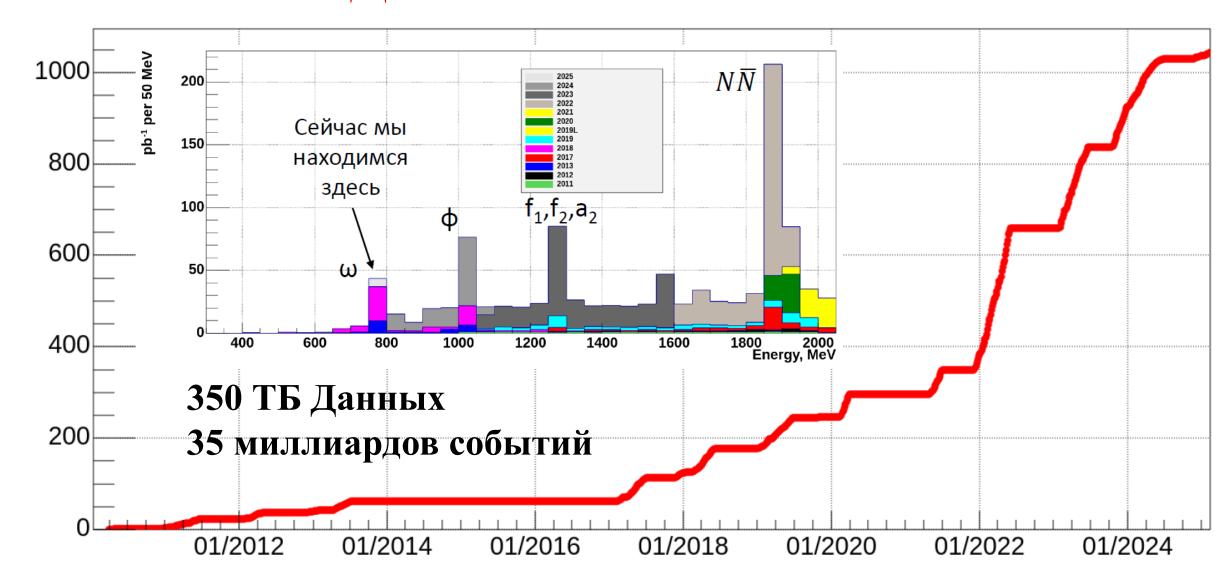

ИЯФ ИМЕНИ Г.И. БУДКЕРА СО РАН



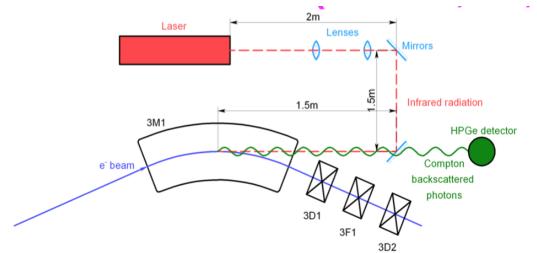
ИСТОРИЯ

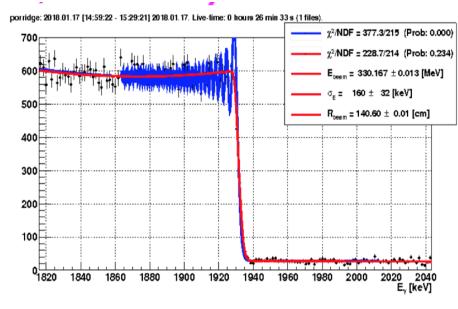


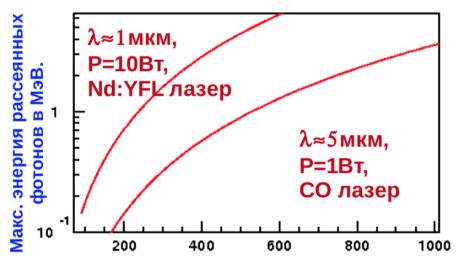

ВЭПП-2000 (2010-2013)


Модернизация ВЭПП-2000 в 2013 – 2016

(Инжекционный комплекс)



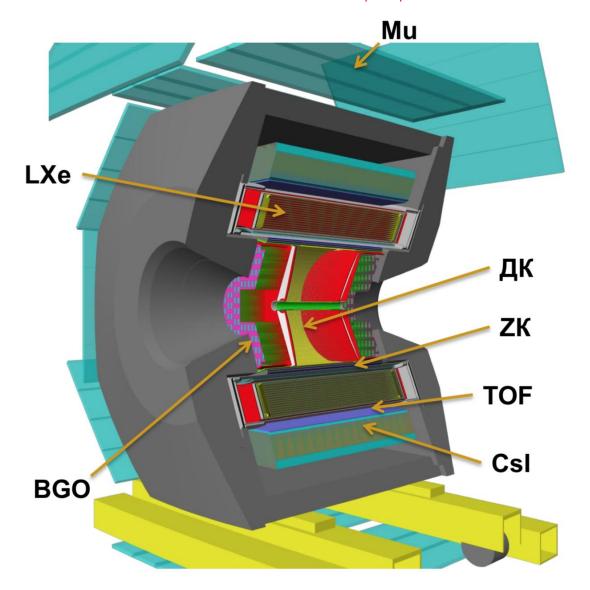

НАБОР ДАННЫХ НА ВЭПП-2000

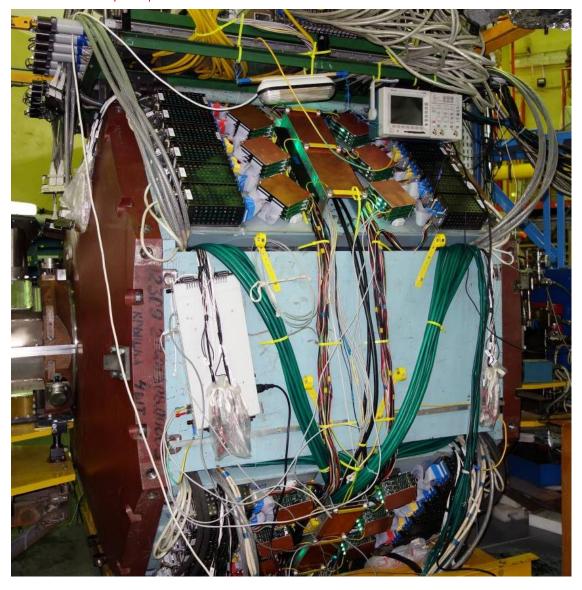


ИЗМЕРЕНИЕ ЭНЕРГИИ ПУЧКА В ВЭПП-2000

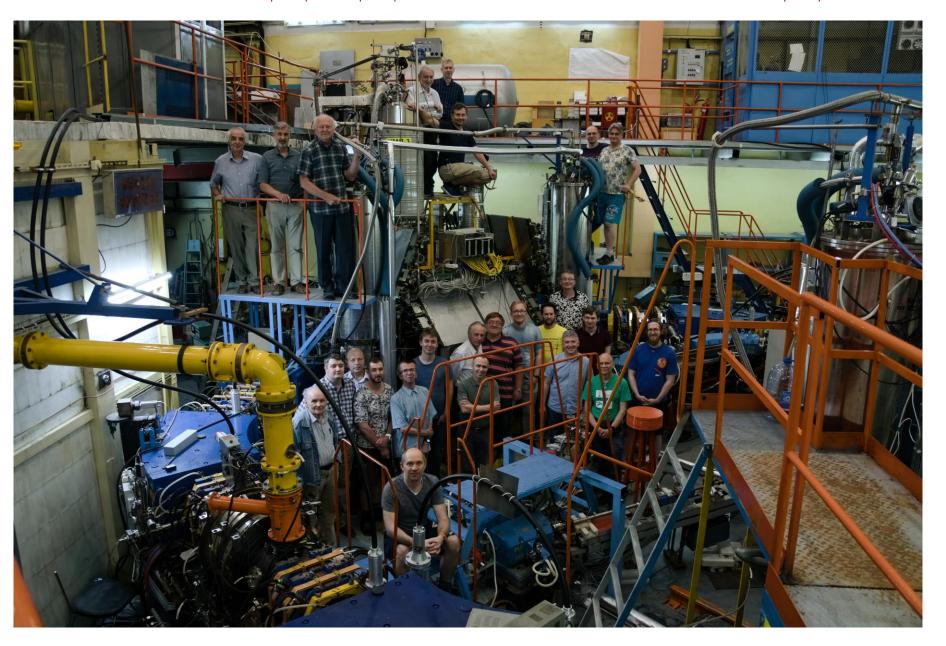
Энергия пучка ВЭПП-2000 измеряется по положению края спектра рассеянных фотонов. Точность измерения около 30кэВ.

Два источника фотонов:


иттербиевый и СО лазеры.


со для энергии выше 500 МэВ,

Nd:YAG для энергии до 500 МэВ.


Энергия пучка ВЭПП-2000 в МэВ.

ДЕТЕКТОР КМД-3

команда детектора кмд-3

Что мы измеряем?

$$\sigma = \frac{N_{\text{канд}} - N_{\text{фон}}}{\int \mathcal{L}dt \cdot \varepsilon \cdot (1 + \delta)}$$

 $N_{\text{канд}}$ — число событий «кандидатов» $N_{
m don}$ — число фоновых событий Ldt — интегральная светимость ε – эффективность регистрации $(1+\delta)$ — радиационная поправка

Эксклюзивные процессы $e^+e^- \rightarrow hadrons$

• 2 заряженные

$$e^+e^- \rightarrow \pi^+\pi^-, K^+K^-, K_SK_L, p\overline{p}$$

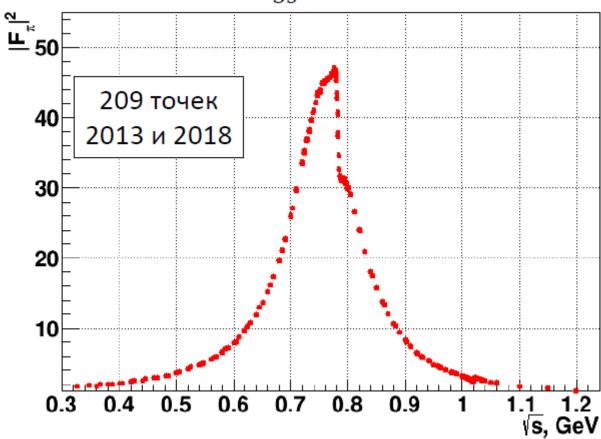
- 2 заряженные + γ $e^+e^- \to \pi^+\pi^-\pi^0, \pi^+\pi^-\eta, K^+K^-\pi^0, K^+K^-\eta, K_SK_L\pi^0, \pi^+\pi^-\pi^0\eta, \pi^+\pi^-\pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0\pi^0$
- 4 заряженные

$$e^+e^- \to \pi^+\pi^-\pi^+\pi^-, K^+K^-\pi^+\pi^-, K_SK^*$$

- 4 заряженные + γ $e^+e^- \to \pi^+\pi^-\pi^+\pi^-\pi^0$, $\pi^+\pi^-\eta$, $\pi^+\pi^-\omega$, $\pi^+\pi^-\pi^+\pi^-\pi^0\pi^0$, $K^+K^-\eta$, $K^+K^-\omega$
- 6 заряженных

$$e^+e^- \to \pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$$

• Только ү


$$e^{+}e^{-} \rightarrow \pi^{0}\gamma, \eta\gamma, \pi^{0}\pi^{0}\gamma, \pi^{0}\eta\gamma, \pi^{0}\pi^{0}\pi^{0}\gamma, \pi^{0}\pi^{0}\eta\gamma$$

• остальные

$$e^+e^- \rightarrow n\overline{n}, \pi^0e^+e^-, \eta e^+e^-$$

Процесс $e^+e^- \rightarrow \pi^+\pi^-$

$$\sigma(\pi^{+}\pi^{-}) = \frac{\pi\alpha^{2}}{3s} \beta_{\pi}^{3} |F_{\pi}|^{2}$$

Phys.Rev.Lett. 132 (2024) 23, 231903 Phys.Rev.D 109 (2024) 11, 112002

Эксперимент длился 10 лет

Большая статистика

- 34 000 000 $e^+e^- \to \pi^+\pi^-$
- 3 700 000 $e^+e^- \rightarrow \mu^+\mu^-$
- 44 000 000 $e^+e^- \rightarrow e^+e^-$

Перекрестные проверки

3 метода разделения е, π и μ

2 метода измерения полярного угла

Измерение $\sigma(e^+e^- \to \mu^+\mu^-)$ ниже 0.73 ГэВ

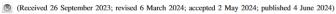
Измерение зарядовой асимметрии

Детальный анализ источников систематики

Процесс $e^+e^- \rightarrow \pi^+\pi^-$

Phys. Rev. Lett. 132 (2024) 23, 231903

PHYSICAL REVIEW LETTERS 132, 231903 (2024)


Editors' Suggestion

Measurement of the Pion Form Factor with CMD-3 Detector and Its Implication to the Hadronic Contribution to Muon (g-2)

F. V. Ignatov 1.2.* R. R. Akhmetshin, 1.2 A. N. Amirkhanov, 1.2 A. V. Anisenkov, 1.2 V. M. Aulchenko, 1.2 N. S. Bashtovoy, 1. D. E. Berkaev, 1.2 A. E. Bondar, 1.2 A. V. Bragin, 1. S. I. Eidelman, 1.2 D. A. Epifanov, 1.2 L. B. Epshteyn, 1.2.3 A. L. Erofeev, 1.2 G. V. Fedotovich, 1.2 A. O. Gorkovenko, 1.3 F. J. Grancagnolo, 4. A. A. Grebenuk, 1.2 S. S. Gribanov, 1.2 D. N. Grigoriev, 1.2.3 V. L. Ivanov, 1.2 S. V. Karpov, 1. S. S. Kasaev, 1. V. F. Kazanin, 1.2 B. I. Khazin, 1. A. N. Kirpotin, 1. A. Koop, 1.2 A. A. Korobov, 1.2 A. N. Kozyrev, 1.2.3 E. A. Kozyrev, 1.2 P. P. Krokovny, 1.2 A. E. Kuzmenko, 1. A. S. Kuzmin, 1.2 I. B. Logashenko, 1.2 P. A. Lukin, 1.2 A. P. Lysenko, 1. K. Yu. Mikhailov, 1.2 I. V. Obraztsov, 1.2 V. S. Okhapkin, 1.4 V. Otboev, 1.2 K. Perevedentsev, 1.2 Yu. N. Pestov, 1.4 S. Popov, 1.2 G. P. Razuvaev, 1.2 Yu. A. Rogovsky, 1.2 A. A. Ruban, 1.3 N. M. Ryskulov, 1.4 E. Ryzhenenkov, 1.2 A. V. Semenov, 1.2 A. I. Senchenko, 1.2 Yu. Shatunov, 1.4 V. B. Shebalin, 1.2 D. N. Shemyakin, 1.2 B. A. Shwartz, 1.2 D. B. Shwartz, 1.2 A. L. Sibidanov, 5 E. P. Solodov, 1.2 A. A. Talyshev, 1.2 M. V. Timoshenko, 1.4 V. M. Titov, 1.5 S. Tolmachev, 1.2 A. I. Vorobiov, 1.4 V. Yudin, 1.2 I. M. Zemlyansky, 1.5 D. S. Zhadan, 1.4 M. M. Zharinov, 1.4 A. S. Zubakin 1.5 L. M. Zemlyansky, 1.5 L. Shebalin, 1.5 L. M. Zemlyansky, 1.5 L. Shebalin, 1.5 L. Shebali

(CMD-3 Collaboration)

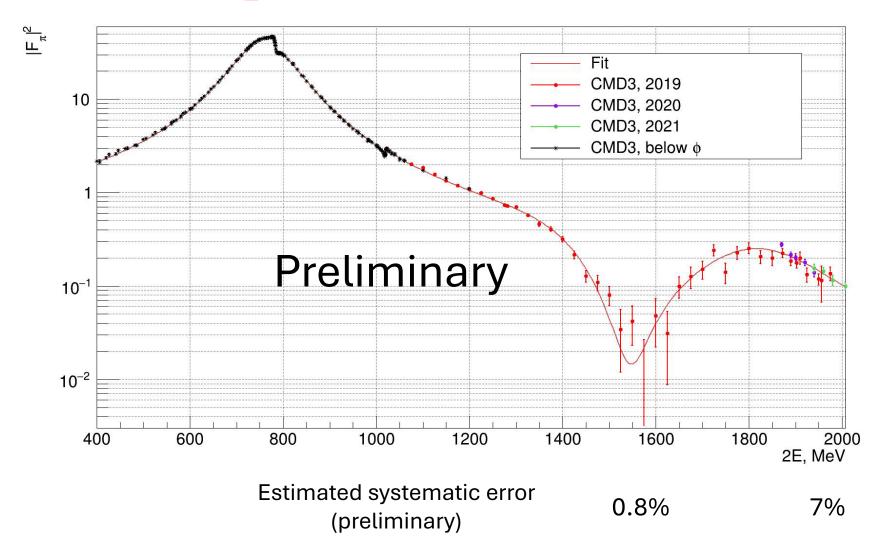
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk 630090, Russia
 Novosibirsk State University, Novosibirsk 630090, Russia
 Novosibirsk State Technical University, Novosibirsk 630092, Russia
 Instituto Nazionale di Fisica Nucleare, Sezione di Lecce, Lecce, Italy
 University of Victoria, Victoria, BC V8W 3P6, Canada

Phys. Rev. D 109 (2024) 11, 112002

PHYSICAL REVIEW D 109, 112002 (2024)

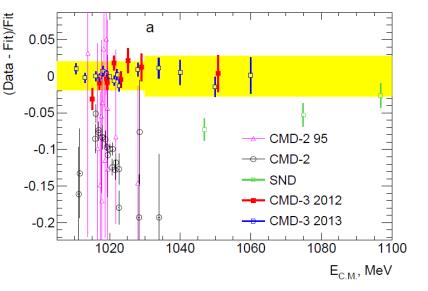
Editors' Suggestion

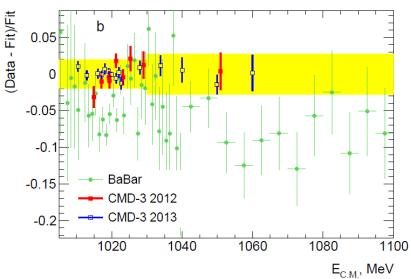
Measurement of the $e^+e^- \rightarrow \pi^+\pi^-$ cross section from threshold to 1.2 GeV with the CMD-3 detector


F. V. Ignatov 1.2* R. R. Akhmetshin, 1.2 A. N. Amirkhanov, 1.2 A. V. Anisenkov, 1.2 V. M. Aulchenko, 1.2 N. S. Bashtovoy, 1.2 D. E. Berkaev, 1.2 A. E. Bondar, 1.2 A. V. Bragin, 1.5 I. Eidelman, 1.2 D. A. Epifanov, 1.2 L. B. Epshteyn, 1.2.3 A. L. Erofeev, 1.2 G. V. Fedotovich, 1.2 A. O. Gorkovenko, 1.3 F. J. Grancagnolo, 4 A. A. Grebenuk, 1.2 S. S. Gribanov, 1.2 D. N. Grigoriev, 1.2 V. L. Ivanov, 1.2 S. V. Karpov, 1. A. S. Kasaev, 1.4 F. Kazanin, 1.3 B. I. Khazini, 1.4 A. N. Kirpotin, 1. I. A. Koop, 1.2 A. A. Korobov, 1.2 A. N. Kozyrev, 1.3 E. A. Kozyrev, 1.2 P. P. Krokovny, 1.2 A. E. Kuzmenko, 1.4 S. Kuzmin, 1.2 I. B. Logashenko, 1.2 P. A. Lukin, 1.2 A. P. Lysenko, 1.4 V. U. Mikhailov, 1.2 I. V. Obraztsov, 1.2 V. S. Okhapkin, 1.4 V. Otboev, 1.2 F. A. Perevedentsev, 1.2 Yu. N. Pestov, 1.4 S. Popov, 1.2 G. P. Razuvaev, 1.2 Yu. A. Rogovsky, 1.2 A. A. Ruban, 1.3 N. M. Ryskulov, 1.4 E. Ryzhenenkov, 1.2 A. V. Semenov, 1.2 A. I. Senchenko, 1.4 P. Yu. Shatunov, 1.4 V. E. Shebalin, 1.2 D. N. Shemyakin, 1.2 B. A. Shwartz, 1.2 D. B. Shwartz, 1.2 A. L. Sibidanov, 5 E. P. Solodov, 1.2 A. A. Talyshev, 1.2 M. V. Timoshenko, 1.4 N. Titov, 1.5 S. Tolmachev, 1.2 A. L. M. Zemlyansky, 1.5 S. Zhadan, 1.4 Yu. M. Zharinov, 1.4 S. Zubakin, 1.4 M. V. V. Yudin 1.2

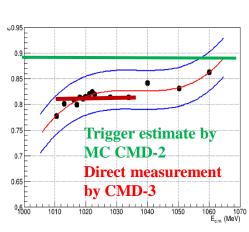
(CMD-3 Collaboration)

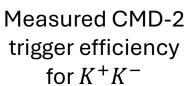
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, 630090, Russia
 Novosibirsk State University, Novosibirsk, 630090, Russia
 Novosibirsk State Technical University, Novosibirsk, 630092, Russia
 Instituto Nazionale di Fisica Nucleare, Sezione di Lecce, Lecce, Italy
 University of Victoria, Victoria, British Columbia, Canada V8W 3P6

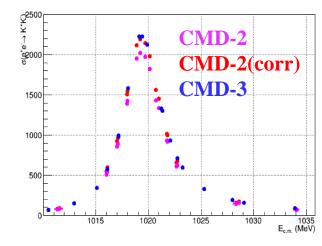



Процесс $e^+e^- \rightarrow \pi^+\pi^-$

Unfortunately analysis has been frozen – lack of people. Analysis of 2022-2024 data (x4-5) has not started yet

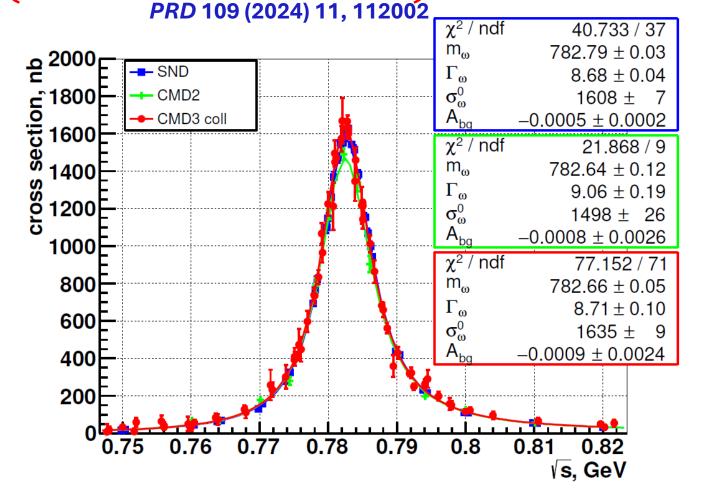

Процесс $e^+e^- \rightarrow K^+K^-$





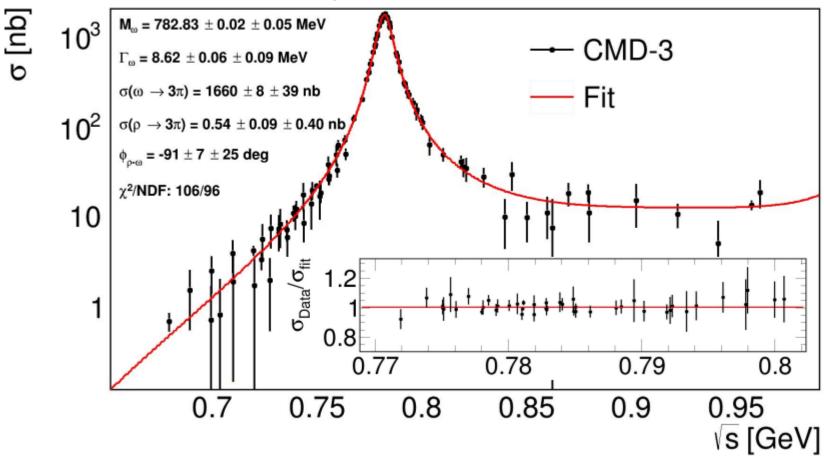
CMD-2 measured K^+K^- cross section ~10% lower than CMD-3

Suspect: trigger efficiency. At CMD-2 it was estimated by MC. At CMD-3 we've measured it and found 9.5% bias to CMD-2 estimate.



-2 Effect of the correction on K^+K^- cross Not published section

 $\sigma(e^+e^- o \pi^+\pi^-\pi^0)$ CMD-3 (2023)

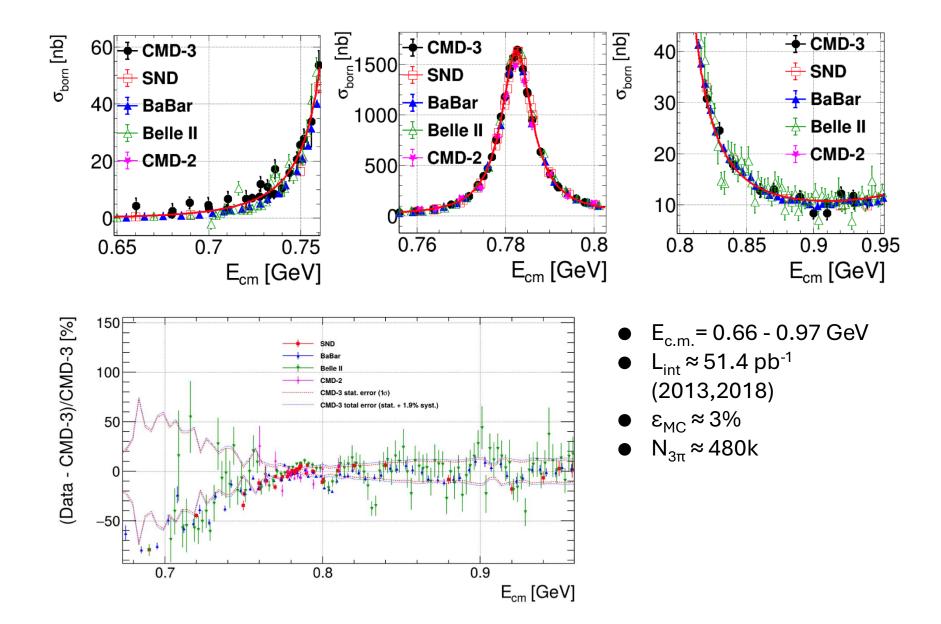

By-product of $e^+e^- \to \pi^+\pi^-$ analysis
Based on small subset of $e^+e^- \to \pi^+\pi^-\pi^0$ sample ("collinear" selection cuts, π^0 nearly at rest)
Estimated systematic uncertainty is 3.3%

 2.2σ tension with CMD-2 measurement

Процесс $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

$$\sigma(s) = \frac{F_{3\pi}(s)}{s^{3/2}} \left| \sum_{V=\rho,\omega,\phi,\omega',\omega''} e^{i\phi_{\omega V}} \sqrt{\frac{\sigma(V\to 3\pi)M_V}{F_{3\pi}(M_V^2)}} \frac{\Gamma_V M_V^2}{D_V(s)} \right|^2 \qquad F_{3\pi}(s) = \frac{(4\pi\alpha)^2 \sqrt{s}}{12\pi} \int \left[\vec{P}_+ \times \vec{P}_- \right]_\perp^2 \left| \sum_{i=0,+,-} \frac{g_{\rho^i \pi \pi}}{D_{\rho^i}(P_{\rho^i}^2)} \right|^2 d\Phi_{3\pi}$$

Preliminary fit (E_{c.m.}= 0.66 - 0.97 GeV)



- Учтен только рт механизм
- Учтена зависимость ширины от энергии
- При аппроксимации массы и ширины резонансов ρ, φ, ω', ω" были зафиксированы на их значениях из PDG
- фаза ω φ = 162° (SND)
- фаза ω ω' = 90° (SND)
- фаза ω ω" = 180° (SND)

$$N_{3\pi} \approx 480k$$

vs [GeV] Сезоны 2013 – 2018

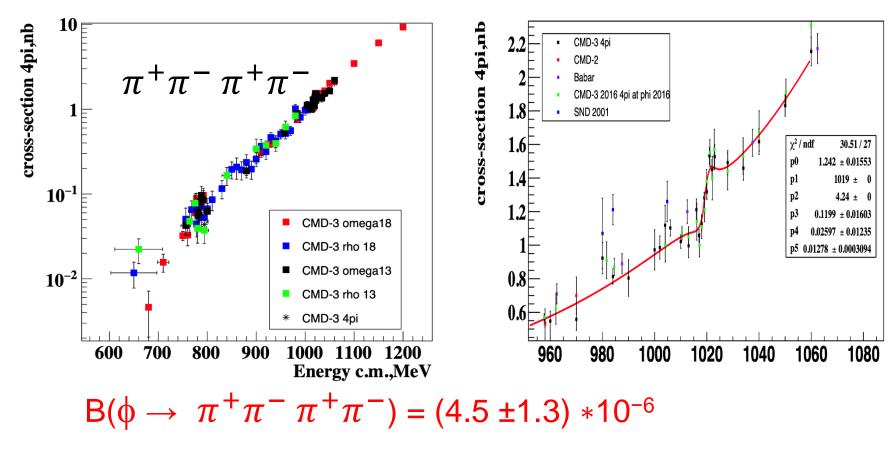
Процесс $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

Процесс $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

Source	Contribution	Estimation method
	(%)	
Luminosity	1.5	Difference between $e^+e^- \rightarrow$
T 1		$e^+e^- \text{ and } e^+e^- \to \gamma\gamma$
Track reconstruction	0.2	Calculation in different selec-
_		tion criteria
π^0 reconstruction	0.5	Comparison with cross section
		without π^0 reconstruction
Trigger efficiency	< 0.1	_
Energy spread	0.3	Calculation of radiative correc-
9 0 2		tion without taking account for
		beam energy spread
Model in MC	< 0.7	Discrepancy with the Phase
		Space MC
ISR in MC	0.3	Different cross-sections
Selection criteria	0.5	Variation of selection criteria
Background subtraction	0.3	Different event counting proce-
_		dures

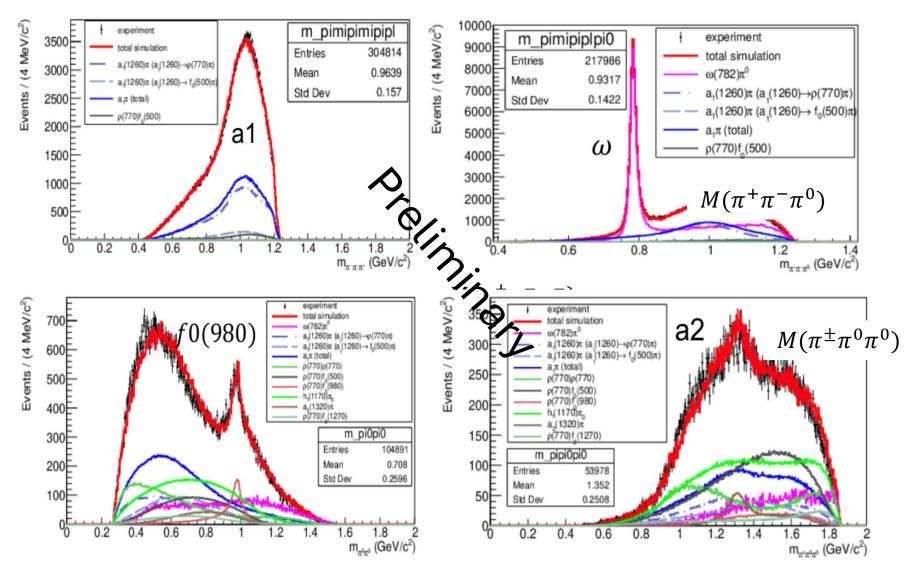
Total systematic uncertainty of cross section: 1.9%

$$a_{\mu}^{had,3\pi} = \frac{1}{4\pi^3} \int_{s_{\min}}^{s_{\max}} \sigma_{\text{born}}^{3\pi}(s) |1 - \Pi(s)|^2 \cdot K(s) \, ds$$

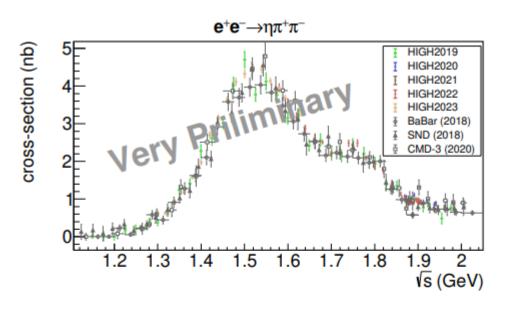

 $\sigma_{\rm born}^{3\pi}(s)$ – Born cross section function after approximation of experimental data $a_{\mu}^{had,3\pi}$ in range $0.62<\sqrt{s}<1.1~GeV/c^2$

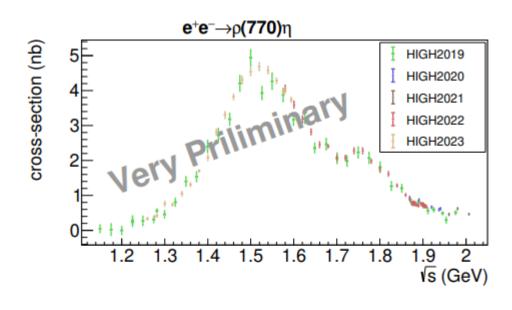
- CMD-3 $(44.3 \pm 0.2 \pm 0.8) \times 10^{10}$ (Function) [Preliminary]
- BaBar $(42.91 \pm 0.14 \pm 0.55 \pm 0.09) \times 10^{10} \ (\Delta = (1.4 \pm 1) \times 10^{10})$

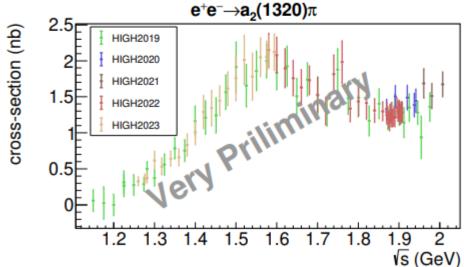
 $a_{\mu}^{had,3\pi}$ in range $0.65 < \sqrt{s} < 0.98 \; GeV/c^2$


- CMD-3 $(38.0 \pm 0.2 \pm 0.8) \times 10^{10}$ (Function) [Preliminary]
- CMD-3 $(38.2 \pm 0.2 \pm 0.8) \times 10^{10}$ (Linear approximation, $\Delta = (0.2 \pm 1.2) \times 10^{10}$)

Процесс $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$

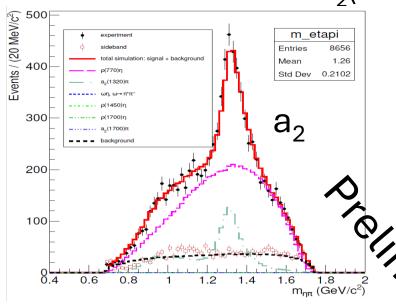

PDG data (3.9+2.8-2.2) *10⁻⁶ CMD-3 2017 - (6.5±2.7±1.6) *10⁻⁶ Analysis in progress with more recent data work on systematic uncertainties

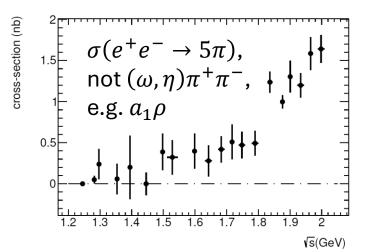

Процессы $e^+e^- \to \pi^+\pi^-\pi^+\pi^-, \pi^+\pi^-\pi^0\pi^0$

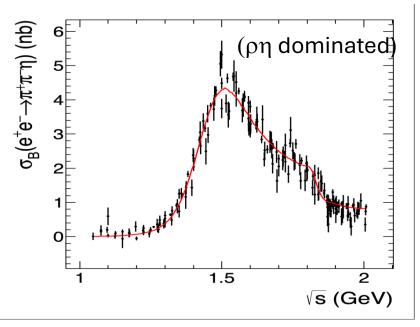


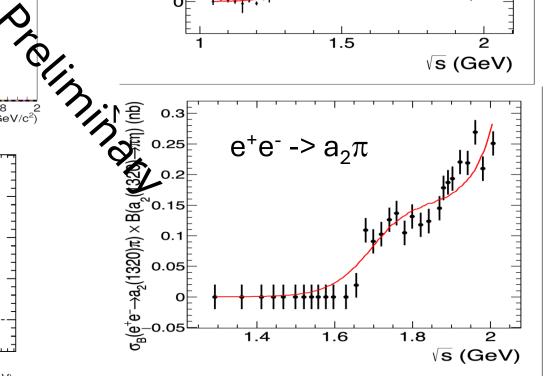
Large data sample allows to perform the amplitude analysis to reduce a model-dependent systematic uncertainties. Work is in progress

Процесс $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^0$

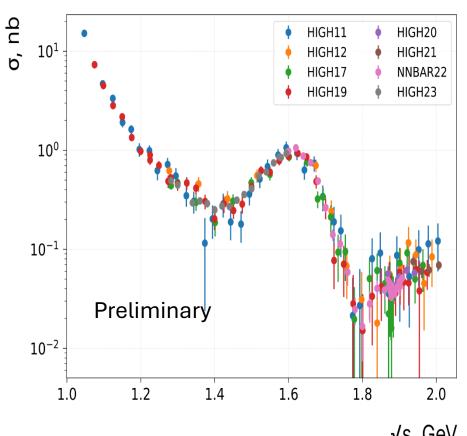


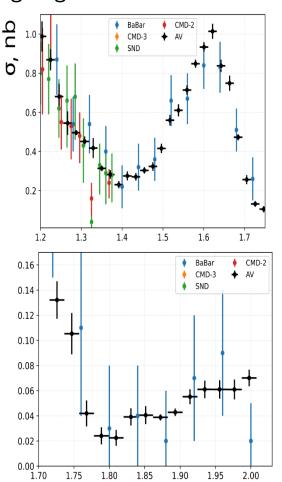



Разработан фреймворк для амплитудного анализа Получены предварительные результаты по изучению динамики проесса e⁺e⁻ →ηπ⁺π⁻


Процесс $e^+e^- \rightarrow \pi^+\pi^-\eta$, $\eta \rightarrow 3\pi$, $\gamma\gamma$

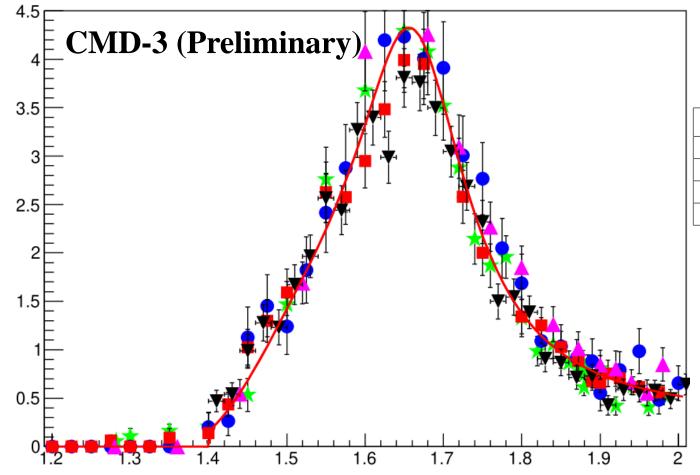
Amplitude analysis shows a contribution from a₂(1320)





ПРОЦЕСС $e^+e^- \rightarrow K^0_L K^0_S$

CMD-3 published $K_S K_L$, $K^+ K^-$ at $\varphi(1020)$ only. The data analysis at energies above φ is ongoing for both channels.



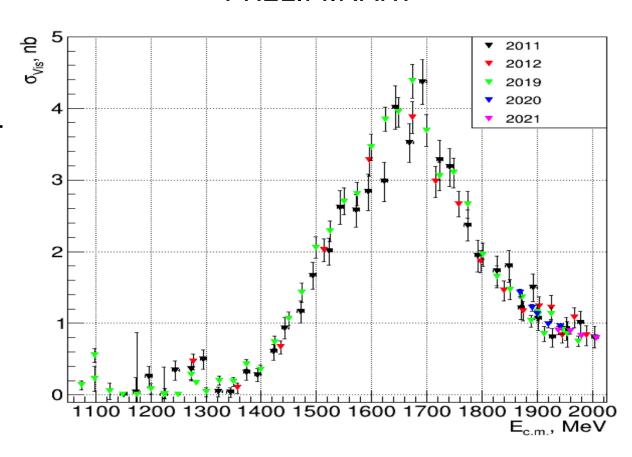
 \sqrt{s} , GeV Paper for K_SK_L is in preparation

σ/20 MeV

Процесс $e^+e^- \rightarrow K_s^0 K^{+-}\pi^{-+}$

	$\Gamma^{\varphi'}_{ee} Br^{\varphi'}_{KK^*(892)}(eV)$	$M_{\varphi'}(MeV)$	$\Gamma_{\varphi'}(MeV)$
This paper	$427 \pm 40 \pm 21$	$1694 \pm 5 \pm 15$	$204 \pm 18 \pm 22$
CMD-3 [7]	-	$1667 \pm 5 \pm 11$	$176 \pm 23 \pm 38$
BaBar	367 ± 50	1709 ± 19	325 ± 68
PDG	-	1680 ± 20	150 ± 50

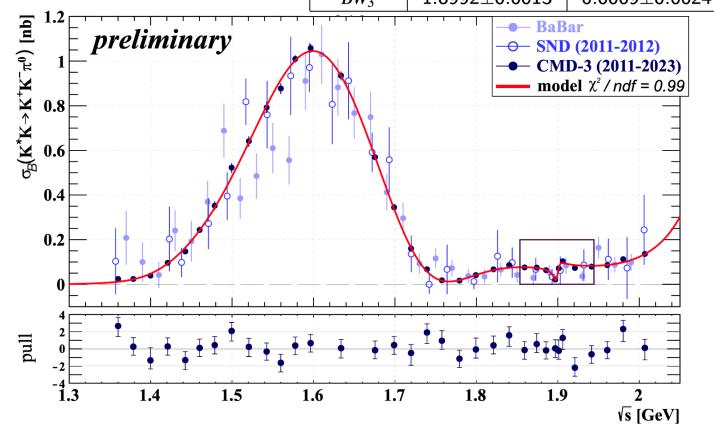
	$\Gamma^{\rho'}_{ee} Br^{\rho'}_{KK^*(892)}(eV)$	$M_{\rho'}(MeV)$	$\Gamma_{ ho'}(MeV)$
This paper	$119 \pm 14 \pm 15$	1502 ± 11	315 ± 27
BaBar	129 ± 15	1508 ± 19	418 ± 26
PDG	-	1465 ± 25	400 ± 60


 $2E_{beam}$, GeV

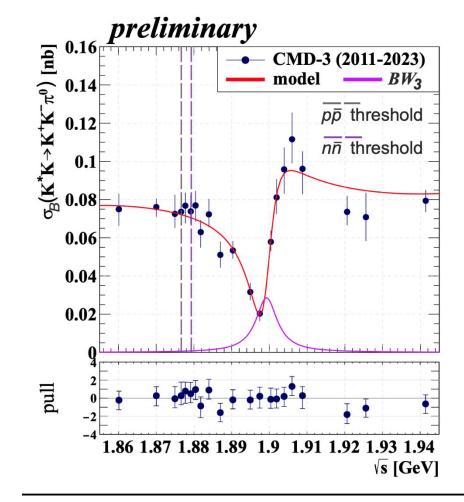
Процесс $e^+e^- \rightarrow K_S K_L \pi^0$

PRELIMINARY

$$\sigma(e^+e^- \to K_S K_L \pi^0)$$
CMD-3


Analysis is ongoing ...

ПРОЦЕСС $e^+e^- \rightarrow K^+K^-\pi^0$


 $\sigma(e^+e^- \to \varphi\pi^0)$ excluded – under separate consideration

	mass [GeV]	width [GeV]	
BW_1	1.752 ± 0.008	$0.194{\pm}0.01$	
BW_2	$1.598{\pm}0.005$	$0.325{\pm}0.015$	
$\rho(1700)$	1.72 (fixed)	0.25 (fixed)	
$\omega(1650)$	1.67 (fixed)	0.315 (fixed)	
$\varphi(2170)$	2.175 (fixed)	0.061 (fixed)	
BW_3	1.8992 ± 0.0013	0.0069 ± 0.0024	

ПРОЦЕСС $e^+e^- \rightarrow K^+K^-\pi^0$

Parameters of the introduced resonance: $m = 1.8992 \pm 0.0013$ GeV and $\Gamma = 6.9 \pm 2.4$ MeV.

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

OMITTED FROM SUMMARY TABLE

See the review on "Spectroscopy of Light Meson Resonances."

ρ (1900) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do no	ot use the	e following data for	avera	ges, fits,	limits, etc. • • •
1880 ± 10		¹ ABLIKIM	22L	BES3	$2.0-3.08 e^{+}e^{-} \rightarrow K^{+}K^{-}\pi^{0}$
$1909 \pm 17 \pm 25$	54	² AUBERT	085	BABR	10.6 $e^+e^- \rightarrow \phi \pi^0 \gamma$
1880 ± 30		AUBERT	06D	BABR	10.6 $e^+e^- \rightarrow 3\pi^+3\pi^-\gamma$
1860 ± 20		AUBERT	06D	BABR	10.6 $e^+e^- \rightarrow 2(\pi^+\pi^-\pi^0)\gamma$
1910 ± 10		3,4 FRABETTI	04	E687	$\gamma p \rightarrow 3\pi^{+}3\pi^{-}p$
1870±10		ANTONELLI	96	SPEC	$e^+e^- \rightarrow hadrons$

 $^{^1}$ From a partial wave amplitude analysis at $\sqrt{s}=2.125$ GeV which includes all the possible intermediate states that match J^{PC} conservation in the subsequent two-body decay. The intermediate states are parameterized with the relativistic Breit-Wigner functions. Statistical error only.

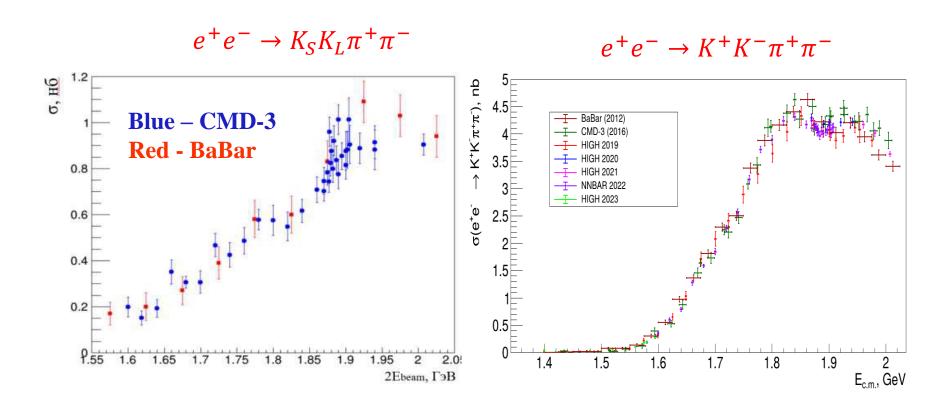
ρ(1900) WIDTH

EVTS	DOCUMENT ID		TECN	COMMENT
ot use the	e following data for	avera	ges, fits,	limits, etc. • • •
	¹ ABLIKIM	22L	BES3	$2.0-3.08 e^{+}e^{-} \rightarrow K^{+}K^{-}\pi^{0}$
54	² AUBERT	085	BABR	10.6 $e^+e^- \rightarrow \phi \pi^0 \gamma$
	AUBERT	06D	BABR	10.6 $e^+e^- \rightarrow 3\pi^+3\pi^-\gamma$
	AUBERT	06D	BABR	$10.6 e^+e^- \rightarrow 2(\pi^+\pi^-\pi^0)\gamma$
	3,4 FRABETTI	04	E687	$\gamma p \rightarrow 3\pi^{+} 3\pi^{-} p$
	ANTONELLI	96	SPEC	$e^+e^- \rightarrow \text{ hadrons}$
	ot use the	ot use the following data for 1 ABLIKIM 54 2 AUBERT AUBERT AUBERT 3,4 FRABETTI	ot use the following data for avera 1 ABLIKIM 22L 54 2 AUBERT 08S AUBERT 06D AUBERT 06D 3,4 FRABETTI 04	ot use the following data for averages, fits, 1 ABLIKIM 22L BES3 54 2 AUBERT 08S BABR AUBERT 06D BABR AUBERT 06D BABR 3,4 FRABETTI 04 E687

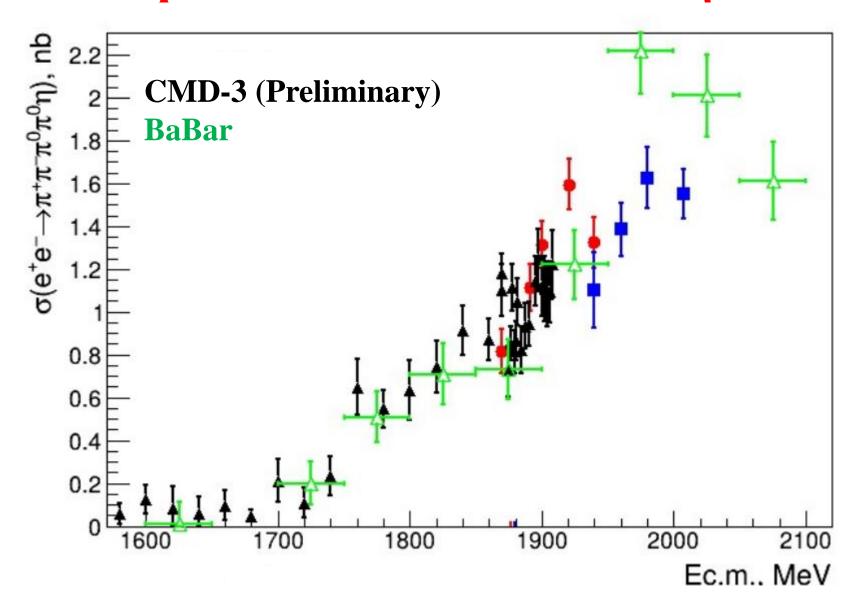
 $^{^1}$ From a partial wave amplitude analysis at $\sqrt{s}=2.125$ GeV which includes all the possible intermediate states that match J^{PC} conservation in the subsequent two-body decay. The intermediate states are parameterized with the relativistic Breit-Wigner functions. Statistical error only.

² From the fit with two resonances.

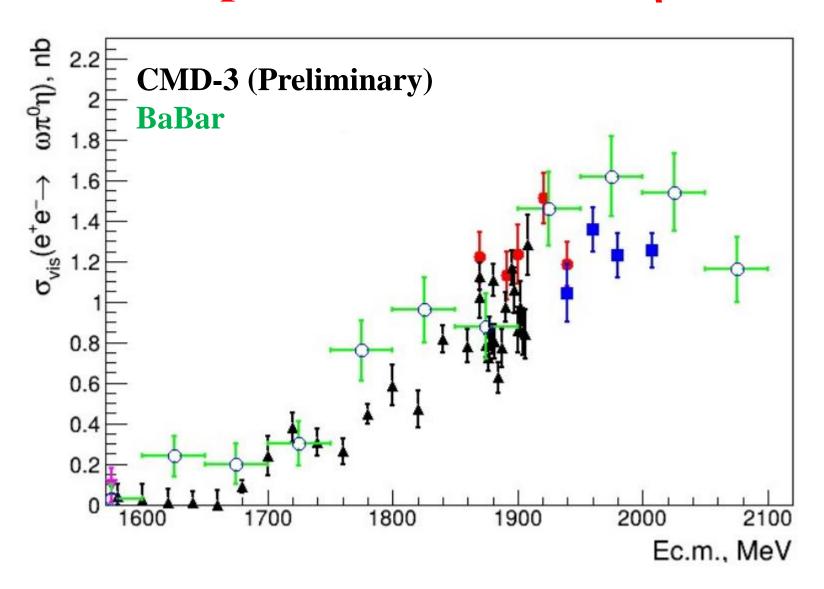
From a fit with two resonances with the JACOB 72 continuum

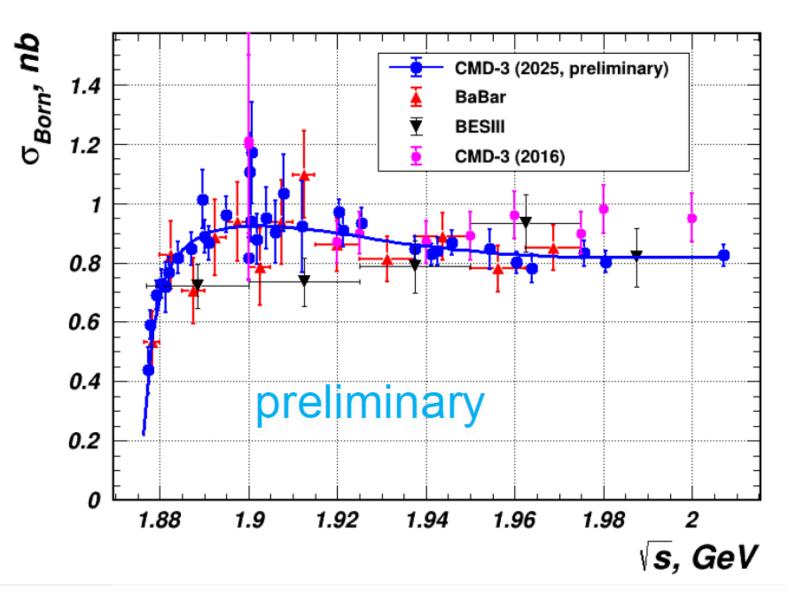

Supersedes FRABETTI 01.

² From the fit with two resonances.

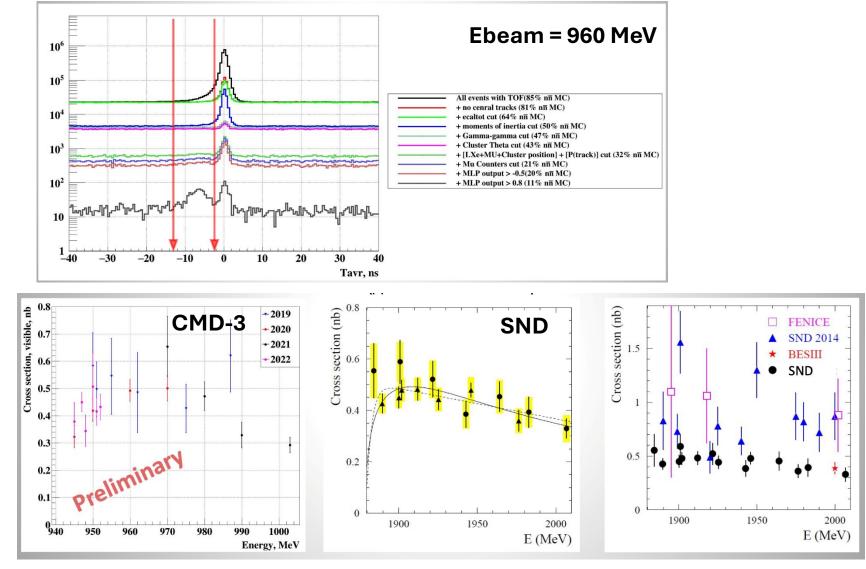

From a fit with two resonances with the JACOB 72 continuum.

Supersedes FRABETTI 01.


PRELIMINARY

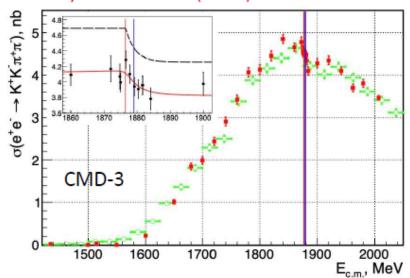

Процесс $e^+e^- \rightarrow \pi^+\pi^-\pi^0 \pi^0\eta$

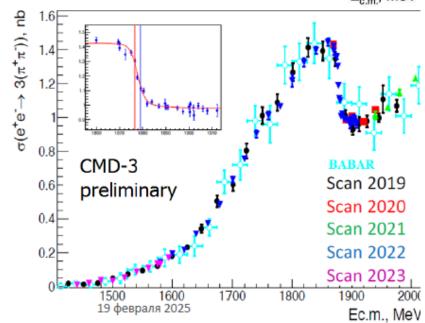
Процесс $e^+e^- \rightarrow \omega \pi^0 \eta$



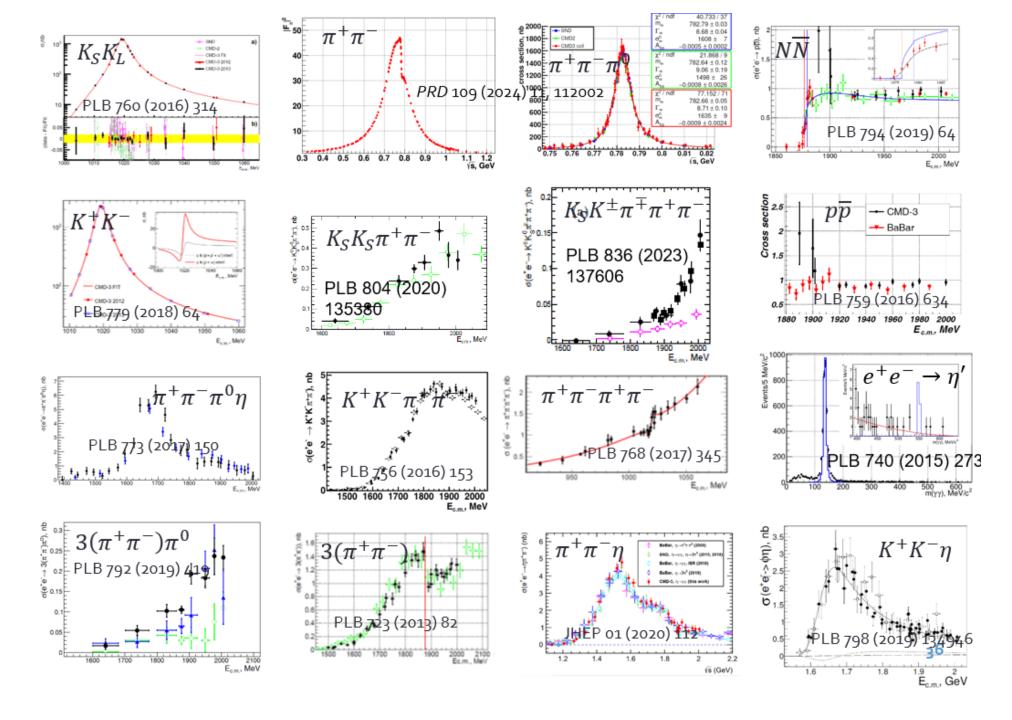
Процесс $e^+e^- \rightarrow p\bar{p}$

- ✓ Предварительный результат КМД-3: самое точное измерение сечения $e^+e^- \to p\bar{p}$ от порога до 2 ГэВ.
- ✓ Поведение сечения похоже на поведение $e^+e^- \to n\bar{n}$.
- ✓ Кривая результат аппроксимации в модели A.I.Milstein and S.G.Salnikov, Phys. Rev. D 106, 074012 (2022)).


Процесс $e^+e^- \rightarrow n\bar{n}$



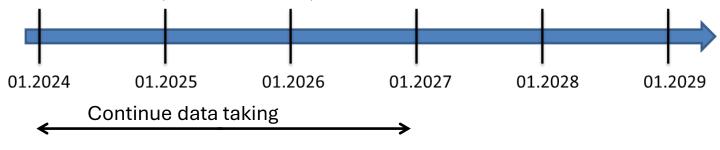
CMD-3 Time-Of-Flight system is used with single large cluster in calorimeter: 5-order of background suppression!


Порог NN в многоадронных реакциях

- ightharpoonup Открытие реакций $e^+e^- \to N \overline{N}$ проявляется как ступенька в сечениях реакций $e^+e^- \to 6\pi$ и $e^+e^- \to K^+K^-\pi^+\pi^-$.
- Ширина ступеньки ~2 МэВ
- В сечениях $e^+e^- → 3\pi$, 4π и др. такого поведения не видно.
- Модель с взаимодействием в конечном состоянии (A.I.Milstein and S.G.Salnikov) объясняет возникновение ступеньки вкладом от промежуточного состояния N\overline{N}\overline{N}. Максимальный вклад ожидается в процессах с I = 1.
- Неожиданным выглядит наличие большого скачка (~ 0.3 нб) в сечении процесса с каонами. Его величина сравнима со скачком (~ 0.4 нб) в сечении $e^+e^- \to 3(\pi^+\pi^-)$

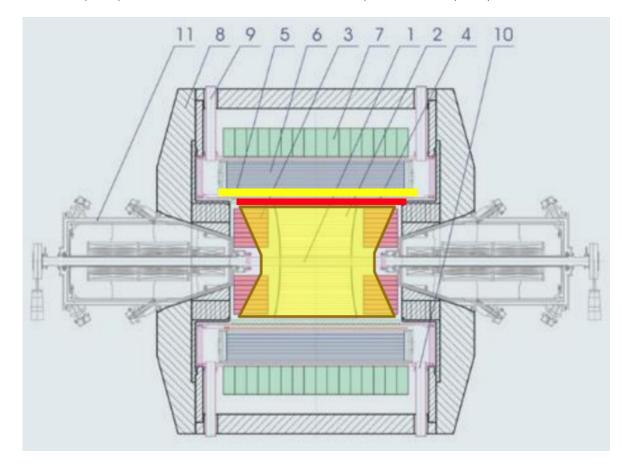
VEPP-2000 /CMD-3 plans

We plan to finish low-energy scan and take some dedicated high energy data over next two years (potential systematics tests: reverse beams – DONE!, no LXe,...)

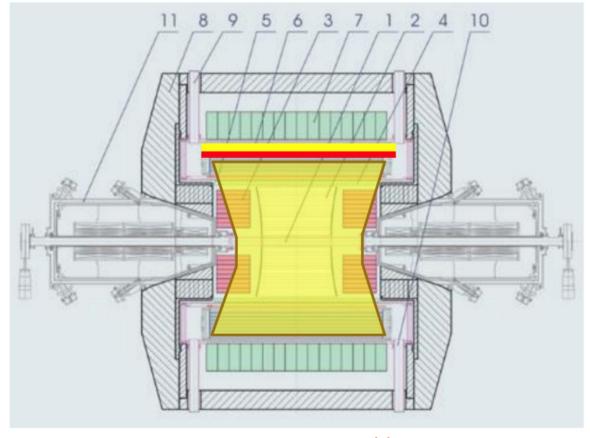

Then we plan to have 3 year break for detectors upgrades

CMD-3 planned upgrades:

- new drift chamber with semi-conducter strip detector at the inner radius
- new Z-chamber at outer radius
- upgrade of electronics


Various options are discussed: longer DC, larger DC, larger magnetic field,...

The goal is to reach ~0.2-0.3% in $\sigma(e^+e^- \to \pi^+\pi^-)$



Making new DC and ZC (and other upgrades)

МОДЕРНИЗАЦИЯ ДЕТЕКТОРА (КМД-3 → КМД-3М)

ДЛИННАЯ ДРЕЙФОВАЯ КАМЕРА

БОЛЬШАЯ ДРЕЙФОВАЯ КАМЕРА

ПРОЕКТ ВЭПП-6 (ИЯФ СО РАН)

- Двухкольцевой электрон-позитронный коллайдер с одним местом встречи.
- Метод встречи Crab Waist пересечение под достаточно большим углом (30-60 мрад), который теоретически позволяет поднять светимость в 10-100 раз.
- Максимально использовать технологии, компетенции, инфраструктуру (инженерную, тоннели, здания) уже существующие в ИЯФ для уменьшения стоимости и сроков.
- Оптимизировать светимость от 1000 МэВ/пучок до области (J/ψ τ) с возможностью работы от \approx 500 МэВ/пучок до \approx 2100 МэВ/пучок.
- Светимость в оптимизируемой области должна быть существенно выше, чем у предшественников.

Концепция:

Не стремиться за экстремальными параметрами ускорителя (ток, $\beta^*_{\ y}$, ξ_y , малые эмиттансы, малая бетатронная связь и т.д.), а выбрать надежно реализуемые и посмотреть, какая получается светимость – интересная для экспериментов или нет.

РАСЧЕТНЫЕ ПАРАМЕТРЫ ВЭПП-6

E(MeV)	500	1000	1550	2100
Π (m)	383.805559893499			
F_{RF} (MHz)	349.935048478849			
2θ (mrad)	60			
β_x^*/β_y^* (mm)	100/3			
I(A)	0.4	0.6	1.5	1.5
$N_{e/bunch} \times 10^{-10}$	0.8	1.2	2.8	4.6
N_b / q	403/448	403/448	403/448	260/448
U_0 (keV) / V_{RF} (kV)	6.6/365	34/742	118/1220	312/1850
ν_s	0.0145	0.0146	0.015	0.0158
δ_{RF} (%)	1.58	1.56	1.54	1.53
$\sigma_e \times 10^3$ (SR/IBS+WG)	0.15/0.76	0.3/0.8	0.5/0.8	0.6/0.9
σ_s (mm) (SR/IBS+WG)	2.6/12.8	5/13	8/14	10/14
ε_x (nm) (SR/IBS+WG)	0.8/28	3.3/8.1	8/6	14.7/10
$\varepsilon_y/\varepsilon_x$	0.02	0.02	0.02	0.02
$L_{HG} \times 10^{-34} (cm^{-2}s^{-1})$	0.029	0.12	0.77	1
ξ_x/ξ_y	0.002/0.02	0.002/0.03	0.002/0.05	0.003/0.05
$\tau_{Touschek}$ (s)	716	827	865	2050
$N_{cells}(\mu)$	$24(\pi/3)$			

можно рассчитывать на светимость:

500 МэВ: 1÷3·10³² см⁻²с⁻¹

≈ 1 · DAPHNE

1000 МэВ: 1·10³³ см⁻²с⁻¹

≈ 10 · VEPP-2000

1550 M \ni B: $0.5 \div 1 \cdot 10^{34}$ cm⁻²c⁻¹

≈ 20 · BEPCII

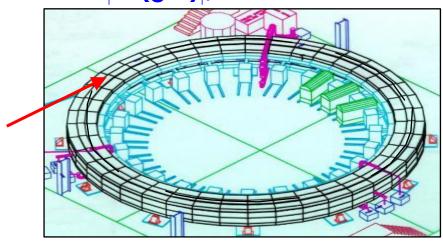
ФИЗИЧЕСКАЯ ПРОГРАММА КОЛЛАЙДЕРА ВЭПП-6

Прецизионное исследование свойств легких адронов

ВЭПП-6 будет являться Ј/ ψ фабрикой. Ожидаемая статистика распадов Ј/ ψ мезона — 5×10^{11} (5×10^8 η и 3×10^9 η $^{/}$, 10^{10} а $_2$ и f_2 , 10^9 Λ и Σ).

- ✓ Измерение масс, ширин, вероятностей распадов.
- ✓ Исследование динамики распадов.
- ✓ Поиск редких и запрещенных в Стандартной модели распадов и явлений.

Заключение


- \square Цель экспериментов КМД-3 на коллайдере ВЭПП-2000 измерение эксклюзивных сечений $e^+e^- o hadrons$ от 0.32 до 2.007 ГэВ
- \square В 2010-2024 КМД-3 набрал статистику > 1 фб⁻¹ в диапазоне энергий $0.32 \le \sqrt{s} \le 2.007$ ГэВ, доступном на ВЭПП-2000.
- □ В 2026-2028 предполагается модернизация детектора КМД-3, эксперимент возобновится в 2029
- □ Ведется анализ данных $e^+e^- \to hadrons$. Результаты уже опубликованы в > 120 статьях в международных реферерируемых журналах.
- □ В ИЯФ СО РАН разрабатывается проект коллайдера следующего поколения ВЭПП-6, который также станет рекордсменом в области энергий 2x(0.5-2.0) ГэВ

Backup Slides

Аномальный магнитный момент мюона (I)

- Гиромагнитное отношение д для
 - Точечного фермиона: g = 2
 - Вклады высших порядков: g ≠ 2
- Мюонная аномалия

•
$$-a_1 = (g-2)_1/2$$

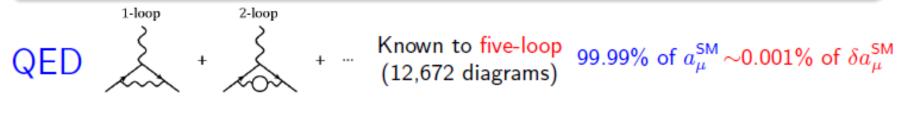
$$\omega_S = \frac{geB}{2m} + (1 - \gamma) \frac{eB}{\gamma m}$$
 $\omega_c = \frac{eB}{\gamma m}$

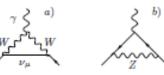

$$\omega_a = \omega_s - \omega_c = a \frac{eB}{m}$$

$$\vec{\mu} = g \frac{e\hbar}{2mc} \vec{S}$$

E821 Experiment @ BNL (1997-2001):

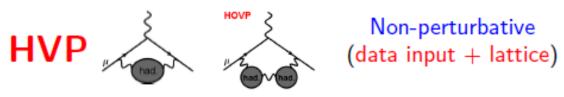
J. Muller et al., <u>Annu</u>. Rev. Nucl. Par S. Vo. 62(2012), 237


$$a_{\mu} = (11 659 208.9 \pm 6.3) 10^{-10} (0.54 ppm)$$


Аномальный магнитный момент мюона (П)

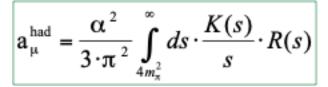
The Standard Model determination of a_{μ}

$$a_\mu^{\rm SM} = a_\mu^{\rm QED} + a_\mu^{\rm EW} + a_\mu^{\rm had,\; VP} + a_\mu^{\rm had,\; LbL} + a_\mu^{\rm BSM??}$$

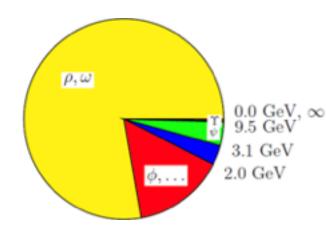


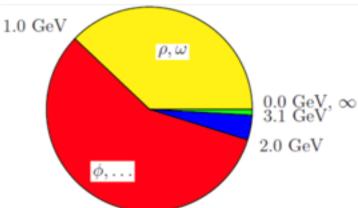
EW $\frac{\gamma}{\mu}$ $\frac{\delta}{\mu}$ $\frac{\delta}{\mu}$ Known to two-loop (with m_H known) 0.0001% of $a_{\mu}^{\text{SM}} \sim 0.2\%$ of $\delta a_{\mu}^{\text{SM}}$

0.006% of $a_{\mu}^{\rm SM}$ ~47% of $\delta a_{\mu}^{\rm SM}$

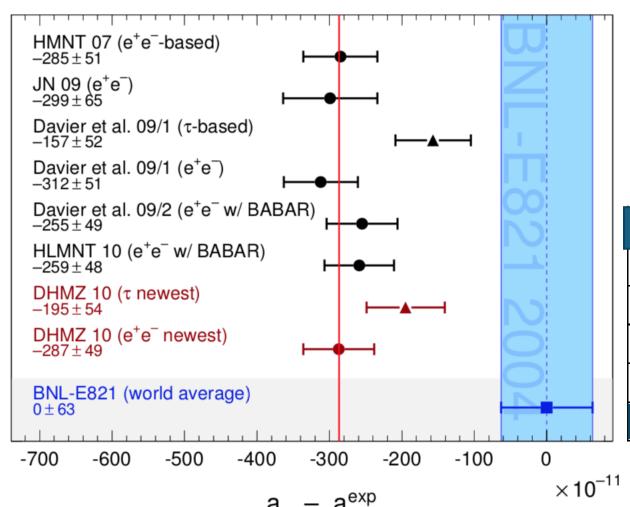


Non-perturbative (data input + model/lattice)


0.0001% of $a_{\mu}^{\rm SM} \sim$ 53% of $\delta a_{\mu}^{\rm SM}$



???????



$$R(s) = \frac{\sigma(e^+e^- \to \gamma^* \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

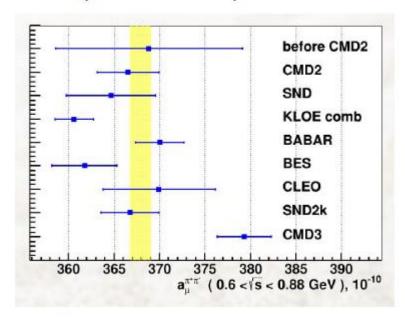
Аномальный магнитный момент мюона (III)

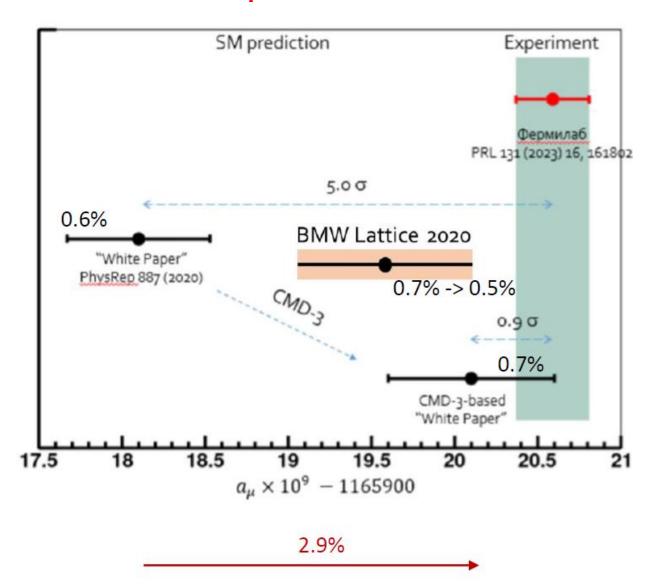
$$a_{\mu}^{\text{SM}}=11\,659\,182.\,05\,(3.\,56)\,\mathrm{x}\,10^{\,-\,10}\,$$
 (Теория) $a_{\mu}^{EX}=11\,659\,208.\,9\,(6.\,4)\,\mathrm{x}\,10^{\,-\,10}\,$ (Эксперимент Е821)

$$a_{\mu}^{EXP} - a_{\mu}^{SM} = 3.6\sigma$$

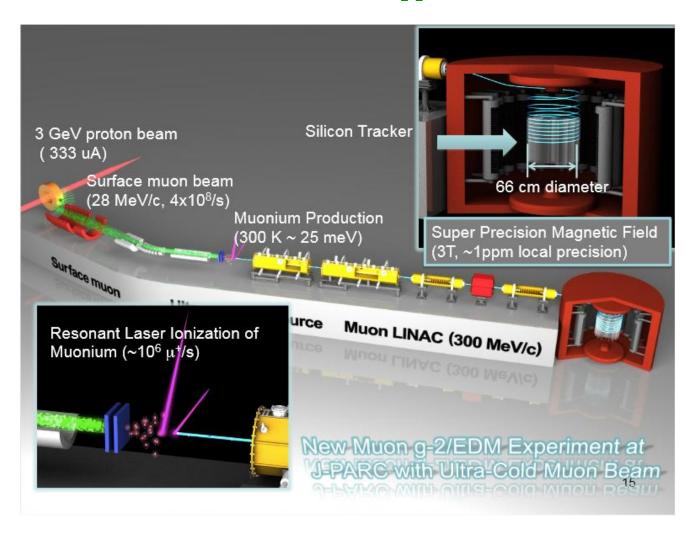
(M. Davier et al., EPJC71(2011)1515)

Вклад	Значение, х10 ⁻¹⁰	Ошибка, 10 ⁻¹⁰
КЭД	11 658 471.895	0. 008
Слабый	15.4	0.2
Адронный	693.0	4.9
Е821 (БНЛ)	11 659 208.9	6.4
E821 -	28.7	8.0


Новая физика ? Флуктуация ? Нужны новые точные измерения (g-2)/2, новые точные измерения σ_{had}


Эксперимент Е969 в лаборатории имени Э. Ферми (Чикаго, США)

Текущий статус а и


Сравнение результатов разных экспериментов

Будущие эксперименты

Эксперимент E34 (J-PARC), 2030 - Точность: 0.1 ppm

