

Лаборатория анализа данных физики высоких энергий

Томского государственного университета

Физический анализ данных

Томский Государственный Университет

Мария Диденко от лица группы анализа данных

15.09.2025

Направления работы

Повторение анализа ATLAS Open Data

Воспроизведение измерения сечений tt и Z на данных 2015 года (√s = 13 ТэВ)

Цель: валидация цепочки анализа и инфраструктуры.

Верификация методов анализа

Пример: WVZ в pp-столкновениях

Цель: отработка методологии повышения точности.

Алгоритмы машинного обучения

Пример: tW при 13 ТэВ, ATLAS

Цель: сравнение BDT, NN, Transformers, GNN и др. по метрикам качества классификации.

Изучение рождения и дифференциальных распределений мезонов J/ψ, ω и φ

Протон-протонные столкновения, данные LHC (ATLAS)

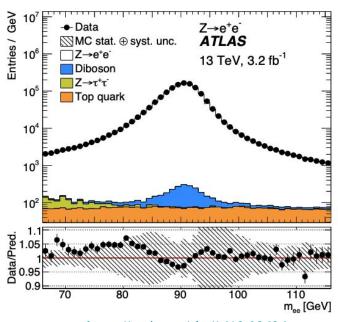
Готовится публикация

Повторение анализа

Цель: Измерение сечений рождения пар топ-кварков (tt) и Z-бозонов на данных ATLAS 2015 года (√s = 13 ТэВ) для валидации цепочки анализа и инфраструктуры.

Подготовка данных:

- Ntuples с ослабленной преселекцией для сохранения информации, релевантной SR/VR/CR-регионам и оценке QCD.
- Включены все данные и МС-сэмплы, активированы систематики.


Базовая преселекция:

- Определение SR, VR, CR-регионов.
- Использованы выборки: Z→ee (сигнал), многобозонный фон, tt, Z→тт.

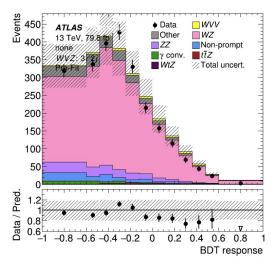
Результат: Полная цепочка анализа успешно отработана:

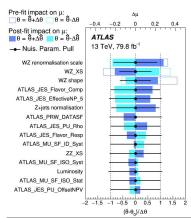
Добавление систематик:

- Включить основные экспериментальные и теоретические систематики
- Запустить всю процедуру

https://arxiv.org/abs/1612.03636

WVZ анализ


- Полный запуск анализа BDT и TRExFitter выполнен.
- Результаты полностью совпадают с последней итерацией анализа.


Цель:

- 1. Систематически исследовать влияние параметров на точность анализа и систематические неопределенности.
- 2. Протестировать метод **Better Bootstrap Confidence Intervals** (BBCI) на данном анализе.

Почему BBCI:

- Анализ уже готов и проверен, что позволяет сосредоточиться на тестировании метода.
- BBCI модифицированный бутстрэп-метод, который улучшает оценку доверительных интервалов параметров за счёт коррекции смещений и нестабильности при малых выборках.
- Применение к результатам WVZ позволит сравнить точность и устойчивость интервалов с классическими методами.

Этапы внедрения BBCI

- 1. Подготовка анализа финализированный BDT/TRExFitter.
- 2. Подготовка реплик генерация bootstrap-выборок (текущий этап).
- 3. **Запуск фиттингов** прогоны TRExFitter на репликах.
- 4. Распределения параметров сбор, коррекция смещений, интервалы.
- 5. Сравнение методов.
- 6. Интерпретация выводы и визуализации.

Сравнение методов ML на **НЕР**-данных

Цель: Оценить эффективность современных алгоритмов ML для задач классификации в физике частиц.

Данные:

- ATLAS Open Data (2015–2016)
- Репозиторий HEPData

Физический процесс:

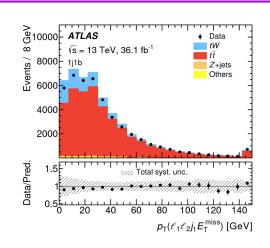
Производство топ-кварка в ассоциации с W-бозоном при \sqrt{s} = 13 ТэВ (ATLAS).

- 1. Запуск генерации ntuples (Выполнен)
- 2. Построение гистограмм входных переменных BDT.
- Обучение BDT (Тестовый код BDT уже подготовлен)
- 4. Проверка критериев отбора и статистики выборки.

Measurement of differential cross-sections of a single top quark produced in association with a W boson at $\sqrt{s}=13$ TeV with ATLAS

The differential cross-section for the production of a W boson in association with a top quark is measured for several particle-level observables. The measurements are performed using 36.1 fb $^{-1}$ of pp collision data collected with the ATLAS detector at the LHC in 2015 and 2016. Differential cross-sections are measured in a fiducial phase space defined by the presence of two charged leptons and exactly one jet matched to a b-hadron, and are normalised with the fiducial cross-section. Results are found to be in good agreement with predictions from several Monte Carlo event generators.

5 December 2017


Contact: Top conveners

Eur. Phys. J. C 78 (2018) 186

e-print arXIv:1712.01602 - pdf from arXiv - Physics Briefing Inspire record

Data points

Figures | Tables | Auxiliary Material

Variable	$S[10^{-2}]$
$p_{\mathrm{T}}(\ell_1\ell_2E_{\mathrm{T}}^{\mathrm{miss}}b)$	4.1
$\Delta p_{\mathrm{T}}(\ell_1\ell_2b,E_{\mathrm{T}}^{\mathrm{miss}})$	2.5
$\sum E_{ m T}$	2.3
$\eta(\ell_1\ell_2E_{\mathrm{T}}^{\mathrm{miss}}b)$	1.3
$\Delta p_{\mathrm{T}}(\ell_1\ell_2, E_{\mathrm{T}}^{\mathrm{miss}})$	1.1
$p_{\mathrm{T}}(\ell_1\ell_2b)$	1.0
$C(\ell_1\ell_2)$	0.9
$m(\ell_2, b)$	0.2
$m(\ell_1, b)$	0.1
BDT response	8.1

Спасибо за внимание