НЕР Анализ данных

Томский Государственный Университет 14 июля 2025

Направления

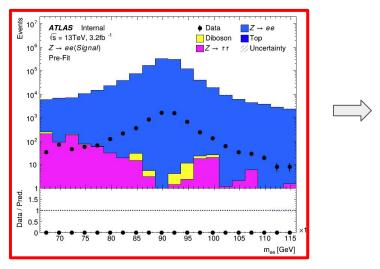
Повторение анализа на ATLAS Open Data [https://arxiv.org/abs/1612.03636]:

Измерение сечений рождения пар топ-кварков (tt^-) и Z-бозонов на данных 2015 года ($\sqrt{s} = 13$ ТэВ)

Повторение анализа:

WVZ в рр столкновениях - методология улучшения точности анализа данных в эксперименте ATLAS (Никита Плетнев)

Оценка эффективности алгоритмов машинного обучения для задач классификации в анализах данных физики высоких энергий: Измерение дифференциальных сечений топ-кварка, производимого в ассоциации с W бозоном на 13 TeB с использованием детектора ATLAS (Heda Фироз)


Рождение и дифференциальные распределения J/Ψ, ω и φ мезонов в протон-протонных столкновениях на Большом адронном коллайдере (выпускная квалификационная работа <u>Ильи Полищука</u> под руководством <u>Ирины и Вадима</u>), Илья готовит статью.

2

Измерение сечений рождения пар топ-кварков (tt) и Z-бозонов на данных 2015 года

.....

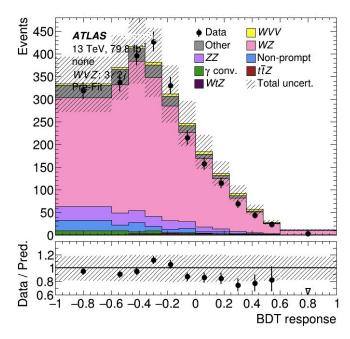
- Настроена конфигурация TRExFitter
- Проверена полная цепочка анализа на небольшой статистике процедура отрабатывает корректно:
- Подготавливаем гистограммы на полной статистике с корректным включением весов: нормировка по сечению, pile-up, светимость
- Следующие шаги: включение систематик в анализ и их пошаговая отладка (Дмитрий), настройка фита (Мария)

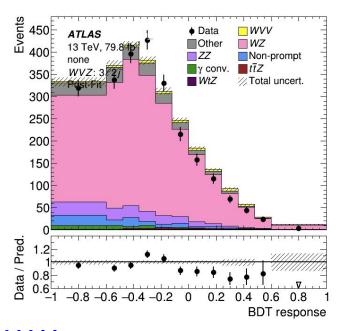
Z → ee Data $Z \rightarrow ee (MC)$

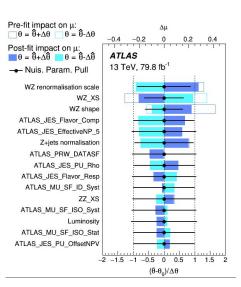
$$w_{\sigma} = rac{\int L \mathrm{d}t \; \sigma}{\eta \sum_{i} w_{i}}$$

светимость: 3045.834 pb⁻¹

Форма МС соответствует данным, но:

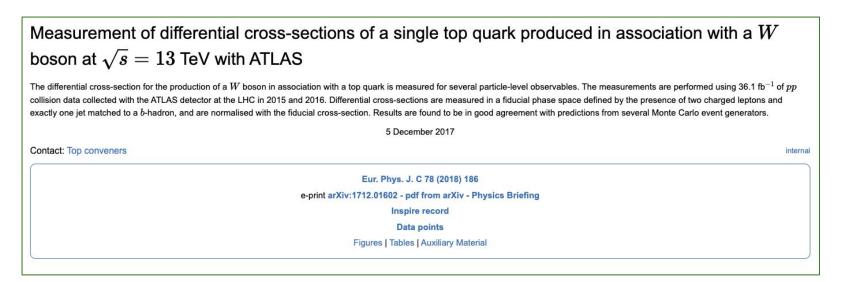

• МС сильно выше данных по норме во всём диапазоне




Полный запуск анализа BDT и TrexFitter выполнен

Результаты полностью совпадают с последней итерацией, полученной Олесей

План: обновить обучение BDT и систематически исследовать влияние параметров на точность анализа и систематические неопределённости (Никита Плетнев)



Алгоритмы машинного обучения для задач классификации

Цель: оценить эффективность современных методов машинного обучения (Transformers, GAN, RNN, GNN, Diffusion Models и др.) для задач классификации в физике частиц (Неда Фироз)

- Анализ проводится на основе открытых данных ATLAS OpenData и репозитория HEPData.
- Рассматривается процесс производства топ-кварка в ассоциации с W-бозоном при энергии 13 ТэВ,
 зарегистрированный детектором ATLAS.

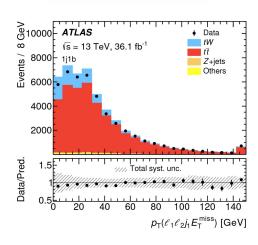
Алгоритмы машинного обучения для задач классификации

Все необходимые данные размещены на кластере

Необходимо подготовить ntuples для обучения BDT

Отсутствуют ключевые переменные, необходимые для расчёта входных переменных ВDТ:

- Пропущенная поперечная энергия (МЕТ)
- Флаг или значение b-tagging


Следующие шаги:

- Добавить MET и b-tagging в ntuple-файлы (уже выполнено)
- Запуск генерации ntuples

Параллельно:

- Сгенерировать тестовые ntuples
- Построить гистограммы всех входных переменных ВDТ
- Провести тестовое обучение BDT до полной генерации ntuples
 - Неда уже подготовила код для тренировки ВDT и начала тестирование
- Проверить критерии отбора событий и оценить статистику выборки

Variable	$S[10^{-2}]$
$p_{\mathrm{T}}(\ell_1\ell_2E_{\mathrm{T}}^{\mathrm{miss}}b)$	4.1
$\Delta p_{\mathrm{T}}(\ell_1\ell_2b,E_{\mathrm{T}}^{\mathrm{miss}})$	2.5
$\sum E_{ m T}$	2.3
$\eta(\ell_1\ell_2E_{ m T}^{ m miss}b)$	1.3
$\Delta p_{\mathrm{T}}(\ell_1\ell_2, E_{\mathrm{T}}^{\mathrm{miss}})$	1.1
$p_{\mathrm{T}}(\ell_1\ell_2b)$	1.0
$C(\ell_1\ell_2)$	0.9
$m(\ell_2, b)$	0.2
$m(\ell_1, b)$	0.1
BDT response	8.1

Thank you!

Данные Open Data Atlas 2015-2016

Open Data Atlas (https://opendata.cern.ch/record/80020)
Формат данных: 33 fb-1 DAOD PhysLight format

- Данные, собранные детектором ATLAS в рамках экспериментов на Большом адронном коллайдере за 2015-2016 год
- 7 групп симулированных физических процессов, включающих номинальные процессы (электрослабые бозоны, Хиггс, QCD-джеты, топ-кварки) и вариации с различными параметрами этих процессов необходимые для оценки систематических ошибок измерений.

Related datasets

Run 2 2015 proton-proton collision data
ATLAS DAOD_PHYSLITE format Run 2 2015 proton-proton collision data

Run 2 2016 proton-proton collision data

ATLAS DAOD_PHYSLITE format Run 2 2016 proton-proton collision data

MC simulation electroweak boson nominal samples

ATLAS DAOD_PHYSLITE format MC simulation electroweak boson nominal samples

MC simulation exotic signal samples

ATLAS DAOD_PHYSLITE format MC simulation exotic signal samples

MC simulation Higgs nominal samples

ATLAS DAOD_PHYSLITE format MC simulation Higgs nominal samples

MC simulation Higgs systematic variation samples

ATLAS DAOD_PHYSLITE format MC simulation Higgs systematic variation samples

MC simulation QCD jet nominal samples

ATLAS DAOD_PHYSLITE format MC simulation QCD jet nominal samples

MC simulation QCD jet systematic variation samples

ATLAS DAOD_PHYSLITE format MC simulation QCD jet systematic variation samples

MC simulation SUSY signal samples

ATLAS DAOD_PHYSLITE format MC simulation SUSY signal samples

MC simulation top nominal samples

ATLAS DAOD_PHYSLITE format MC simulation top nominal samples

MC simulation top systematic variation samples

ATLAS DAOD_PHYSLITE format MC simulation top systematic variation samples

~9 миллиардов событий (реальные данные и симуляции) при

общем размере ~66.87 ТБ.

Production ntuples

Доступ к системам ATLAS:

- Успешно настроен доступ к инфраструктуре ATLAS с inter-ноды кластера ТГУ
- Отлажена система аутентификации и взаимодействия с основными сервисами ATLAS (Rucio, CVMFS и др.)
- Завершено расширение доступа на все вычислительные ноды полная интеграция анализа в распределённую среду

Распределённые вычисления:

- Настроена система распределённых заданий HTCondor на кластере TГУ
- Проведено тестирование отправки задач и мониторинга, адаптирован интерфейс фреймворка под многонодовую архитектуру

Предпродакшн и тестирование:

- Запущен предварительный продакшн ntuples на моделированных данных (MC)
- Цель: протестировать стабильность цепочки обработки и поведение фреймворка в реальных условиях

Измерение сечений рождения пар топ-кварков (tt⁻) и Z-бозонов

Реализован фреймворк для преобразования данных из формата DAOD PhysLight в удобный и читаемый формат ntuples, пригодный для последующего физического анализа

- Репозиторий: https://git.hep.tsu.ru/mdidenko/framework/
- Построен на базе Athena Analysis Base v25.2.45

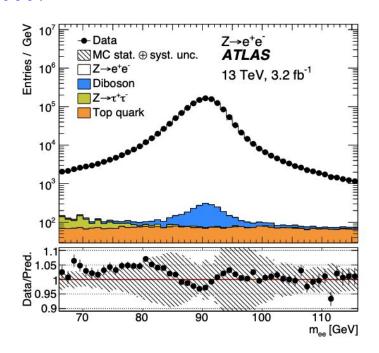
Выходной ntuple: дерево analysis, с сохранением информации по событиям, электронам, мюонам и джетам

- Базовая преселекция
- Подключение триггеров 2015 года (электронные и мюонные цепочки, полное соответствие данным)
- Реализация отбора объектов (электроны, мюоны, джеты)
- Удаление перекрытий (OR) между электронами, мюонами и джетами

Все параметры управления заданы в конфигурационном ҮАМС-файле

- Возможности адаптации под конкретные задачи:
 - о включение/отключение систематик (runSystematics: False)
 - о переопределение контейнеров, ID, изоляций и триггеров
 - о гибкая настройка выходных переменных и структуры ntuple

Фреймворк может использоваться для различных задач ATLAS без изменения кода — достаточно скорректировать конфигурацию


Продакшн на данных Run 2

Готовится первый продакши на реальных данных 2015 года

- Данные: 3.2 фб⁻¹ (~9 ТВ)
- MC: $Z \rightarrow ll$ (электроны и мюоны)
- Ожидаемая длительность: 2 недели

Планируемые первые результаты анализа

- Предварительные распределения отношения данных к MC (data/MC)
- Переменная: инвариантная масса Z-бозона
- Включить систематические неопределенности
- Ожидаемое завершение подготовки распределений через 2 недели

https://arxiv.org/abs/1612.03636

.....