Введение в физику частиц и анализ экспериментальных данных 5 лекция

Реконструкция физических объектов

- Различные сигнатуры: частицы оставляют уникальные следы в различных под-детекторах (sub-detectors) ATLAS.
- Реконструкция физических объектов это процесс интерпретации этих сигналов для извлечения значимой информации о каждой частице.

Реконструкция треков в ATLAS:

- Треки важны для определения вершин и идентификации частиц (например, электронов, мюонов).
- Треки внутреннего детектора (ID) ATLAS реконструируются из попаданий в пиксельный, SCT и TRT детекторы.
- Используется фильтр Калмана для определения параметров трека:

Параметры воздействия (поперечный и продольный).

координатах

Поперечные проекции и параметры треков

Треки анализируются в двух проекциях: поперечной и $\rho\phi$ -плоскостях. Ключевые параметры:

- R: Опорная позиция (например, первичная вершина).
- d₀: Поперечный параметр воздействия.
- z₀sinθ: Продольный параметр воздействия

Фильтр Калмана берёт измерения (попадания в детекторах) и их ошибки, а затем минимизирует неопределённости, чтобы получить наилучшую оценку параметров трека.

Реконструкция треков

Треки восстанавливаются из попаданий (hits):

- Пиксельные кластеры: 3D точки.
- Полоски: 2D точки, комбинируются с углом стерео 40 мрад для 3D.
- TRT: 2D точки (r, ϕ) в бочке, (r, z) в торцах.

Алгоритм "изнутри-наружу":

- 1. Поиск начальных точек (Seed finding): Триплеты попаданий в кремниевом детекторе (синие окружности).
- 2. Сбор попаданий (Hit collection): Экстраполяция на другие слои (пунктирная синяя окружность).

Метод начинается с кремниевого детектора и расширяется к TRT для повышения точности

Этапы реконструкции треков ATLAS

Этапы подгонки и расширения треков

Первая подгонка трека (First track fit):

• Фильтр Калмана уточняет параметры трека (кремниевый трек-кандидат).

Разрешение неоднозначностей (Ambiguity solving):

- Нейронные сети разделяют общие кластеры между треками
- Результат: "кремниевый трек".

Расширение на TRT (TRT extension):

• Кремниевый трек расширяется до TRT для улучшения разрешения импульса.

Метод "снаружи-внутрь":

• Для треков от распадов: начинается с TRT, затем добавляются попадания из кремниевого детектора.

Кремниевый трек (красный) и его расширение на TRT

Проблемы реконструкции треков в плотной среде ATLAS

- Заряженные частицы в плотной среде (ядро струи):
 - Кластеры перекрываются из-за:
 - 1. Угла падения частицы.
 - 2. Диффузии электронов и дырок.
 - 3. Дрейфа электронов в В-поле.
 - Размер кластера: 1,4–3 пикселя (поперечно), 1–3,5 пикселя (продольно).
- Проблемы:
 - Перекрытие кластеров затрудняет реконструкцию.
 - о Для струй с $p_T > 200$ ГэВ: размер кластера < размера пикселя.
 - о Для $p_T > 1$ ТэВ: кластеры ещё меньше.
- Решение: нейронные сети помогают разделять кластеры и улучшать точность реконструкции треков в струях с высоким *p*_T

Перекрытия кластеров в ядре струи (несколько частиц в одном кластере).

Определение вершин в ATLAS

Определить, какие треки исходят из общей вершины.

- 1. Поиск вершин: Определение треков с общей точкой начала.
- **2**. **Определение вершины:** Оценка позиции \vec{r} и ковариационной матрицы Σ .

Вероятность трека:
$$P(\vec{r}) = \int d\phi_p \exp\left[-rac{1}{2}\left(\vec{r} - \vec{r}(\phi_p)
ight)^T \operatorname{COV}_{3x3}^{-1}(\phi_p)\left(\vec{r} - \vec{r}(\phi_p)
ight)
ight]$$

Схема процесса определения вершин в ATLAS

Реконструкция первичной вершины в ATLAS

Алгоритм Run 2: итеративный поиск вершин

- 1. **Инициализация:** Начальная позиция вершины центр пятна пучка (x,y) и полумодовый метод для оси z.
- Фильтрация: Треки с χ2>7 считаются выбросами и удаляются.
- 3. Повторение: Этапы 1–3 повторяются для всех треков.

Первичная вершина (PV): Вершина с наибольшей ∑р_T² треков. **Применение:** Треки перестраиваются с учётом PV.

Вид (г, ф) и вдоль оси z с вершинами

Кластеры калориметра для реконструкции частиц

Топо-кластеры — метод для восстановления энергии в калориметре ATLAS.

Формируются по значимости сигнала:

Этапы построения:

- 1. Инициализация: Ячейки с ζcellEM>4.
- 2. Рост: Добавление соседних ячеек (ζcellEM>2).
- 3. Граница: Добавление периметра (ζcellEM>0).

Разделение:

- Для $E_{cell}^{EM} > 500 \text{ МэВ:}$ разделение, если ≥ 4 соседних ячейки.
- Вес разделения:

(b) Clustering of $|\epsilon_{coll}^{EM}| > 2$ cells.

(a) Clustering of $|\epsilon_{cell}^{EM}| > 4$ cells.

Схема формирования топо-кластеров в

калориметре ATLAS

расстояние до центра тяжести кластера.

Основы реконструкции электронов и фотонов

Электроны (e^{\pm}): треки во внутреннем детекторе (ID) + ливни в EM калориметре.

Фотоны (ү): только ливни в ЕМ калориметре (электрически нейтральны).

Этапы:

- 1. Подготовка треков и кластеров.
- 2. Формирование суперкластеров:
 - Электроны: топо-кластеры (Е_т > 1ГэВ) + треки (≥4 попадания в кремниевые детекторы).
 - Фотоны: топо-кластеры ($E_T > 1.5 \ \Gamma \ni B$) + конверсионные вершины ($\gamma \rightarrow e^+ e^-$).
- 3. Добавление вторичных кластеров, калибровка.
- 4. Разрешение неоднозначностей, построение объектов.

Реконструкция фотонов

- Электрически нейтральны, создают ливни в ЕМ калориметре.
- Реконструкция: топо-кластеры ($E_T > 1.5 \ \Gamma$ эВ, $|\eta| \le 2.3$).

Суперкластеры:

- Инициализация: топо-кластеры с $E_{EM} > 0.5 \ \Gamma$ эВ.
- Кластеры: Δη×Δφ=0.075×0.125.
- Учёт конверсий ($\gamma \rightarrow e^+e^-$): ~65% фотонов конвертируются.

Треки:

• Конверсионные вершины: одно- или двухтрековые (TRT).

Идентификация, изоляция и эффективность фотонов

Идентификация:

- Разделение фотонов и адронных струй.
- Рабочие точки: Loose, Medium, Tight.

Efficiency of the Tight photon identification as a function of ET for converted photons

Definition of the Loose and Tight photon isolation working points.

Working point	Calorimeter isolation	Track isolation
Loose	$E_{\mathrm{T}}^{\mathrm{cone20}} < 0.065 imes E_{\mathrm{T}}$	$p_{\rm T}^{\rm cone20}/E_{\rm T} < 0.05$
Tight	$E_{\rm T}^{\rm cone40} < 0.022 \times E_{\rm T} + 2.45 {\rm GeV}$	$p_{\rm T}^{\rm cone20} / E_{\rm T} < 0.05$
Data efficiency	1. ATLAS $fs=13 \text{ TeV}, 44.3 \text{ fb}^{-1}$ $Z \rightarrow Ily$ 0.9 0.8 0.7	
Data /MC	0.6 20 GeV < E _x < 40 GeV 1.15 1.1 0.95 1.1 0.95 1.1 0.95 1.1 0.95 1.1 0.95 1.1 0.95 1.1 0.95 1.1 0.95 1.1 0.95 1.1 0.95 0.5 1.1 0.5 0.5 1.1 0.5 0.5 0.5 1.1 0.5 0.5 0.5 1.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	5

Efficiency of the respective isolation working points as a function of η for converted photons

Реконструкция и идентификация электронов в ATLAS

- Электроны (e±) создают электромагнитные ливни через тормозное излучение.
- Объединение данных: треки из внутреннего детектора (ID) + энергия в калориметре.
- Кластеры формируются из топо-кластеров :энергия > 4× наложения (pile-up).
- Эффективность (ET>15 ГэВ): 97–99%

Идентификация:

- Метод многомерного правдоподобия (LH).
- Обучение: Z→e+e−, J/ψ→e+e−.
- Рабочие точки: Loose (98%), Medium (90%), Tight (80%).

Диапазон: Электроны с |η|<2.47.

Схема реконструкции электрона: трек и ливень

Изоляция и эффективность электронов

Изоляция (на примере Loose-VarRad):

- Для электронов из W,Z,H: низкая активность в η-φ.
- Калориметр: ET,coneiso<0.3.
- Треки: pT,coneiso<0.15, где

$$\Delta R = min\left(rac{10\ GeV}{p_T}, \Delta R_{max}
ight)$$

Эффективность:

• Общая:

 $\epsilon_{total} = \epsilon_{reco} \times \epsilon_{id} \times \epsilon_{iso} \times \epsilon_{trigger}$

- Loose: ~90% (идентификация и изоляция).
- Изоляция снижает фон от струй и наложения
- Масштабные факторы (ScaleFactor) ~1.

Типы мюонов и методы реконструкции в ATLAS

Мюоны:

- Минимально ионизирующие частицы (MIP).
- Меньше тормозного излучения: ~200× тяжелее электронов.
- Проходят через калориметры, детектируются в мюонном спектрометре (MS).

Типы мюонов:

- 1. Combined (CB): треки ID + MS.
- 2. Segment-tagged (ST): трек ID + сегмент MS.
- 3. Calo-tagged (CT): трек ID + энергия в калориметре.
- 4. Standalone (SA): только треки MS.

Диапазон: |η|<2.5 (ID), |η|>2.5 (MS).

СВ мюоны — наиболее точные, ST и CT дополняют покрытие.

Типы мюонов в ATLAS: CB, ST, CT, SA

Идентификация, изоляция и эффективность мюонов

Идентификация:

- Рабочие точки: Loose, Medium, Tight, High-pT.
- Переменные:
 - о q/p: разница заряда/импульса (ID vs MS).
 - о ρ': разница поперечного импульса (pT).
 - о χ2: качество подгонки трека (CB).

Изоляция (PFIsoLoose_VarRad):

- Заряженные: ΔR=0.3.
- Нейтральные: ΔR=0.2.

Эффективность:

- Z→μ+μ−, J/ψ→μ+μ−: ~96% (|η|<2.5).
- Масштабные факторы (ScaleFactor): ~1 (по данным и МС).

Типы мюонов в ATLAS: CB, ST, CT, SA

Характеристики и реконструкция тау-лептонов

Реконструкция τ сложна из-за короткой длины распада и потери энергии на ν_τ, что требует учета треков и топо-кластеров.

- о Macca: 1.777 ГэВ
- Длина распада: 87 мкм.
- Распад: $\tau \rightarrow v_{\tau} + \ell v_{\ell} (\ell = e, \mu)$ или адроны.
- Адронный канал: 65% (π^{\pm} *или* 3π).

Реконструкция:

- о Основной метод: BDT (Boosted Decision Trees).
- Треки: разделение на ядро (core) и изоляционные (isolation).

Особенности:

- Учёт нейтральных пионов ($\pi^0 \rightarrow \gamma \gamma$).
- Топо-кластеры: информация о фотонах от π^0 .

(а) 1-трековый распад ($\tau \rightarrow \pi^{\pm} v_{\tau}$), (b) 3-трековый распад ($\tau \rightarrow 3\pi v_{\tau}$)

au-лептоны часто возникают в распадах тяжёлых частиц (например, бозона Хиггса $H \to au^+ au^-$), чтобы подчеркнуть их значимость в ATLAS.

Идентификация тау-лептонов с использованием RNN

Идентификация т vs струй сложна из-за схожей топологии.

- Метод: RNN (Recurrent Neural Network).
- Данные: треки и топо-кластеры (фотоны от $\pi^0 \rightarrow \gamma \gamma$).
- Разделение: т vs струи (Run 1: BDT, Run 2: RNN).

Архитектура:

- RNN + LSTM (Long Short-Term Memory).
- Входы: треки, кластеры, высокоуровневые переменные.
- Выходы: вероятность τ-кандидата.

Результаты:

• Улучшение по сравнению с BDT: снижение ошибок на 50–75%, эффективность ~90%.

τ-лептонов