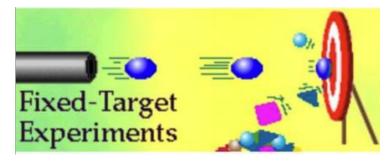
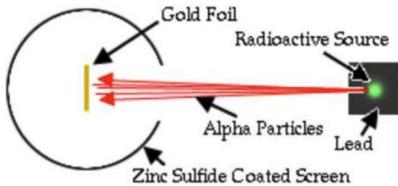
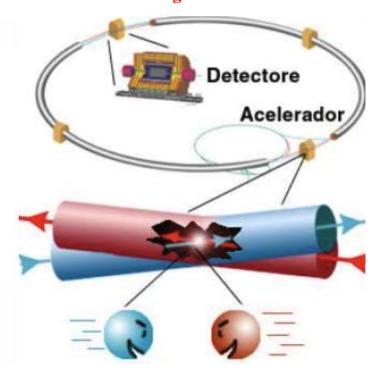

Введение в физику частиц и анализ экспериментальных данных 3 лекция

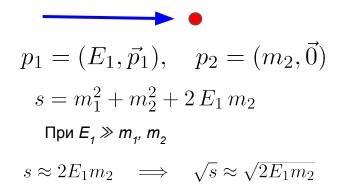

План лекции


- Основная идея ускорения частиц
- Линейные и кольцевые коллайдеры: принципы работы, преимущества и недостатки
- Роль электрических и магнитных полей в ускорении
- Обзор Большого адронного коллайдера (LHC)
- Ускорительная цепочка LHC
- Понятия светимости и pile-up

Эксперименты физики высоких энергий

• Первые эксперименты ΦВЭ

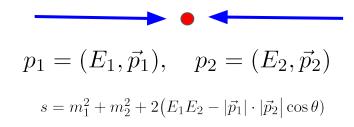

Beam on fixed target!


Rutherford experiment (1909)

Эксперименты ФВЭ с середины 70х:
 Colliding beams!

Основная идея ускорения частиц

Столкновение с неподвижной мишенью (Fixed target)



Пример:

450 ГэВ протон ударяет частицу в покое

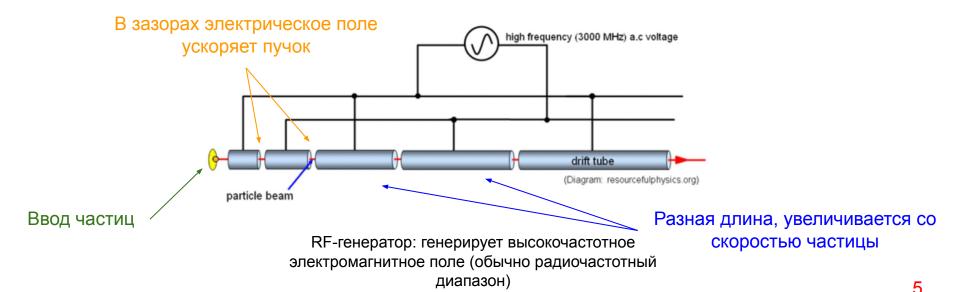
$$\sqrt{s} pprox \sqrt{2 imes 450 imes 1} pprox 30$$
 ГэВ

Эксперимент-коллайдер

При
$$\pmb{E_1} \gg \pmb{m_1}, \, \pmb{m_2} \;\; E_1 = E_2 = E, \; \theta = \pi$$

$$s = 2(E^2 - E^2 \cos \theta) = 4E^2 \rightarrow \sqrt{s} = 2E$$

Пример:

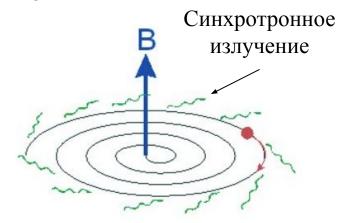

450 ГэВ протон ударяет 450 ГэВ протон √s ≈ 2 x 450 ГэВ = 900 ГэВ

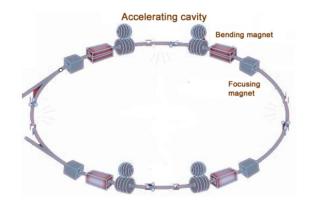
√s - это энергия в системе центра масс; она определяет, сколько энергии доступно для взаимодействия. Например, при аннигиляции частицы и античастицы эта величина соответствует максимальной энергии (или массе) образующихся частиц.

Принцип работы ускорителей: электрические поля

- Для рождения тяжёлых новых частиц необходимо достигать высоких энергий в системе центра масс \sqrt{s}
- Практическое решение: использование радиочастотного (RF) высоковольтного ускорения.

Формула прироста энергии: $\Delta E = q V$




Сила Лоренца и магнитное управление пучком

Сила Лоренца:

$$\frac{d\vec{p}}{dt} = e\left(\vec{E} + \vec{v} \times \vec{B}\right)$$

- Электрическое поле Е:
 - Ускоряет заряженную частицу вдоль или против направления движения (в зависимости от знака заряда).
 - Увеличивает кинетическую энергию и модуль импульса частицы.
- Магнитное поле В:
 - Действует перпендикулярно скорости частицы (v), изменяя направление движения, но не её энергию (при отсутствии иных потерь).
 - В кольцевых ускорителях (синхротронах) дипольные магниты создают необходимый изгиб траектории для циркуляции пучка.
 - Квадрупольные магниты служат для фокусировки пучка, уменьшая его поперечные размеры и сохраняя высокую плотность частиц.

Синхротронное излучение

При движении заряженных частиц по искривленной траектории (например, в кольцевом ускорителе) они излучают фотоны.

Это излучение называется синхротронным, оно приводит к потере энергии ΔE на каждом обороте.

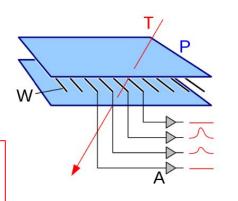
Формула потерь:

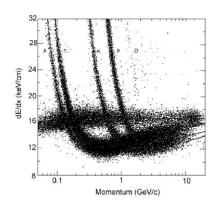
$$\Delta E \propto \frac{1}{R} \left(\frac{E}{m}\right)^4$$

Следствия:

- Требуется: увеличивать радиус коллайдера, чтобы снизить потери.
- Необходимы системы охлаждения и компенсации энергии (RFкамеры) для восполнения потерь.
- Для тяжёлых частиц (протоны, ионы) эффект слабее, однако при очень высоких энергиях тоже становится заметным.
- Синхротронное излучение не влияет напрямую на точку столкновения, но ограничивает проектные параметры коллайдера (радиус, энергию).

Синхротронное излучение

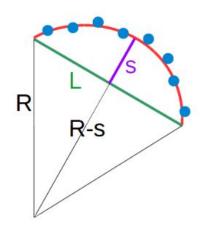

Излучения фотонов при изгибе траектории


Детектирование частиц: трекеры

Трекеры регистрируют потери на ионизацию — таким образом **регистрируются** только **заряженные частицы**

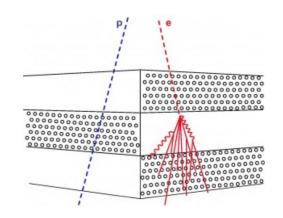
Потери на ионизацию (формула Бете-Блоха):

$$-\frac{dE}{dx} \; = \; \frac{4\pi N_0 \; q^2 \; \alpha^2 (\hbar c)^2}{m_e \; \beta^2} \, \frac{Z}{A} \left[\ln \! \left(\frac{2 \, m_e \; \gamma^2 \; \beta^2}{I} \right) - \beta^2 \right]$$

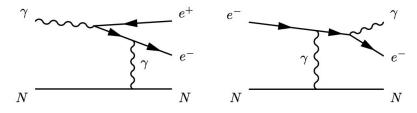

- Зависит от заряда частицы q и её скорости (eta, γ), но не от массы.
- Z/A атомный номер и массовое число материала детектора,
 I средний потенциал ионизации.

Трекер в магнитном поле (В):

- Позволяет измерять радиус кривизны траектории \Rightarrow определить импульс р.
- Измеряем сагитту s прогиб дуги трека, связанный с радиусом R:


$$R \approx \frac{L^2}{8 s}, \quad p = 0.3 B R,$$

где L — длина базиса измерения (расстояние между точками регистрации), B — магнитное поле (в теслах), p — импульс в Γ эB/c.



Детектирование частиц: калориметры

- Калориметры регистрируют электромагнитные (EM) и адронные «ливни» (showers), возникающие при взаимодействии частицы с многослойной структурой из поглощающего материала и сцинтилляторов.
- Частица, врезаясь в высокоплотный материал, порождает каскад вторичных частиц, энергия которых измеряется по световому сигналу или ионизации

Электромагнитный калориметр (e^{\pm} , γ):

Толщина выбирается исходя из радиационной длины (X_o) , чтобы полностью «остановить» электромагнитный ливень.

Адронный калориметр (p, n, π, K, ...):

- Ядерная длина взаимодействия (λ₁) больше радиационной длины ⇒ требуется более толстый (или более плотный) материал.
- Регистрирует адронные ливни, состоящие из пионов, протонов, нейтронов и т.д.

Линейные коллайдеры

- Ускорение происходит в прямолинейном тракте (например, LINAC), где частицы проходят через последовательность ускоряющих секций только один раз.
- Каждая секция (**RF-резонатор**) добавляет частице некоторую энергию, суммарно приводя к высокой конечной энергии.

Преимущества:

- Меньше синхротронных потерь
- Простота конструкции
- Оптимально для электрон-позитронных коллайдеров

Недостатки:

- Большая длина(например, проект линейного коллайдера ILC предполагает длину порядка десятков километров).
- Однократное прохождение пучка
- Сложность увеличения светимости

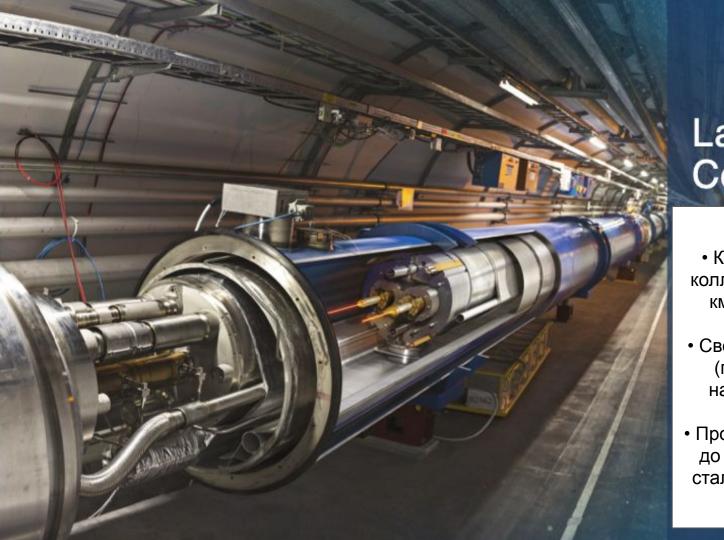
Перспективы и примеры:

Международный линейный коллайдер (ILC) и Compact Linear Collider (CLIC) — проекты будущих электрон-позитронных линейных коллайдеров для прецизионных измерений в области физики за рамками Стандартной модели.

Кольцевые коллайдеры

- Частицы многократно циркулируют в замкнутом кольце (синхротрон)
- В каждом обороте частицы получают дополнительную порцию энергии, постепенно достигая требуемой величины импульса и энергии.

Примеры:


- LEP(Large Electron-Positron Collider) бывший кольцевой коллайдер на электронах и позитронах.
- Tevatron (Fermilab) протон-антипротонный коллайдер.
- LHC(Large Hadron Collider) самый мощный коллайдер для протонов (и тяжёлых ионов).

Преимущества:

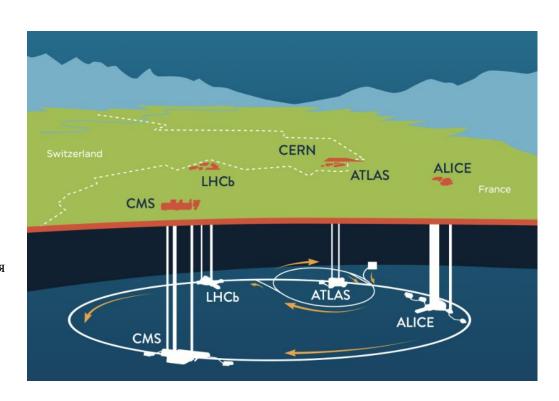
- Повторное ускорение
- Компактность
- Высокая светимость

Недостатки:

- Синхротронное излучение
- Особенно критично для лёгких частиц (электронов)
- Требования к вакууму и магнитному полю:
- Для минимизации столкновений с молекулами газа необходим сверхвысокий вакуум.
- Стабильность магнитного поля и точность фокусировки определяют уровень потерь пучка и качество столкновений.
- Необходимы мощные и точные магнитные системы (диполи, квадруполи, корректоры).
- Системы охлаждения (криостаты) для сверхпроводящих магнитов, как в LHC, существенно усложняют инфраструктуру.

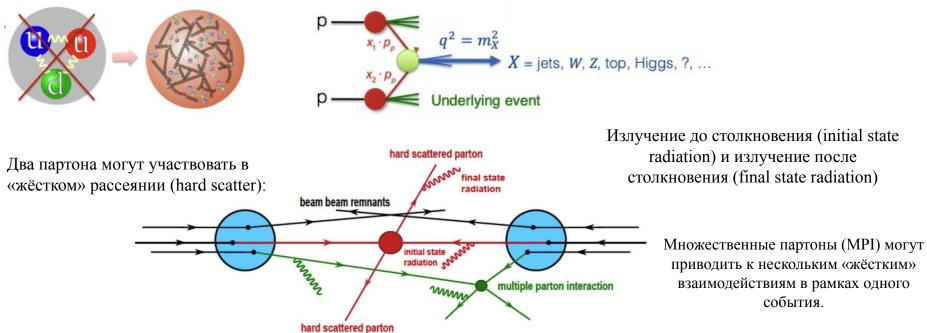
Large Hadron Collider (LHC)

- Кольцевой ускоритель и коллайдер с периметром 27 км, расположенный под землёй
- Сверхпроводящие магниты (при 1,9 K = -271,3 °C) направляют частицы по кольцу
- Протоны и ионы ускоряются до многотэвных энергий и сталкиваются друг с другом


Введение в Большой адронный коллайдер (LHC)

Данные, получаемые в экспериментах, помогают проверить предсказания Стандартной модели и искать признаки новой физики (BSM).

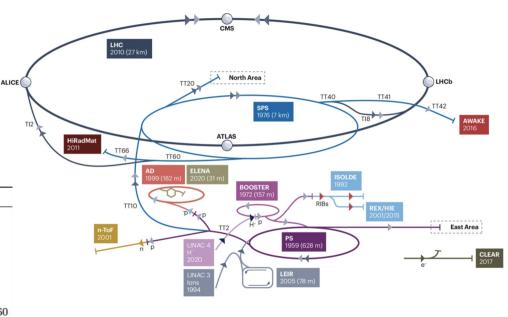
Дальнейшие программы (High-Luminosity LHC) направлены на повышение светимости и расширение возможностей исследования редких процессов.


Энергия пучка: до 6.5 ТэВ на пучок (при суммарной энергии столкновений в центре масс 13 ТэВ и выше).

Сверхпроводящие магниты: используются для удержания протонов на круговой орбите (около 1200 дипольных магнитов, охлаждённых с помощью жидкого гелия).

Протон-протонное столкновение

- Столкновения протон—протон описываются свёрткой функций плотности партонов (Parton Density Functions, PDF) с матричным элементом рассеяния «партон—партон».
- Адронные столкновения гораздо более сложны, чем столкновения лептонов.



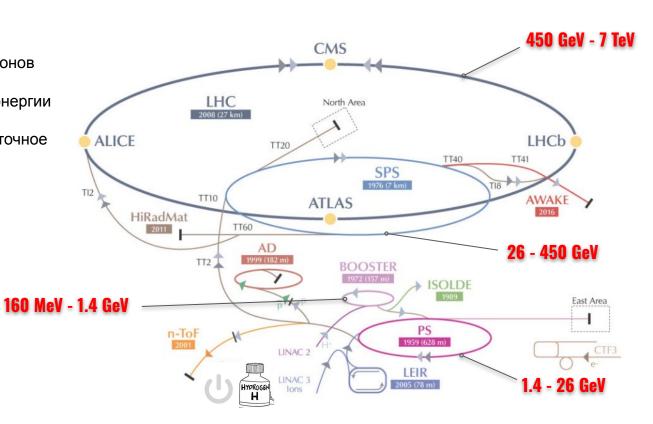
Введение в Большой адронный коллайдер (LHC)

Ускорительная цепочка: пучки протонов проходят предварительное ускорение (LINAC, Booster, PS, SPS) и затем вводятся в LHC для достижения максимальной энергии.

Высокая светимость: за счёт колоссального числа протонов в пучке и их сжатия по сечению удаётся достичь большого числа столкновений в единицу времени.

Parameter	Design	Run 1	Run 2
Beam energy	7	3.5 - 4	6.5
Centre-of-mass energy (\sqrt{s}) [TeV]	14	7 - 8	13
Bunch spacing [ns]	25	50	25
Bunch Intensity [10 ¹¹ ppb]	1.15	1.6	1.2
Number of bunches (n_b)	2800	1400	2500
Transverse emittance (ϵ) [µm]	3.5	2.2	2.2
Amplitude function at the interaction point (β^*) [cm]	55	80	$30 \rightarrow 25$
Crossing angle [µrad]	285	-	300→260
Peak Luminosity [10 ³⁴ cm ² s ⁻¹]	1.0	0.8	2.0
Peak pileup	25	45	60
Nominal magnetic field (B) [T]	8.73	4.16 - 7.76	7.73

Инфраструктура и технологии уникальные требования к вакууму, радиационной защите и криогенным системам; постоянный мониторинг и управление сотнями тысяч параметров.


Ускорительная цепочка LHC

- LINAC4: начальное ускорение протонов

- Booster: дальнейшее повышение энергии

– PS (Proton Synchrotron): промежуточное ускорение

- SPS (Super Proton Synchrotron): подготовка пучка к финальному этапу
- LHC: окончательное ускорение и организация столкновений

Ключевые понятия LHC: Светимость

Мгновенная светимость — число столкновений на единицу площади в единицу времени, измеряемое в см⁻² с⁻¹.

Интегральная светимость \mathcal{L}_{int} — суммарное количество столкновений за период эксперимента, определяемое как

 $\mathcal{L}_{\text{int}} = \int \mathcal{L} dt$

Формула мгновенной светимости:

$$\mathcal{L} = rac{N_b^2 \, n_b \, f_{
m rev} \, \gamma}{4 \pi \, \sigma_x \, \sigma_y} \, F$$

 N_b — число частиц в bunch (примерно 1.15 \times 10¹¹ протонов),

 n_h — число банчей в пучке,

 f_{rev}^{\sim} — частота оборотов пучка,

у — релятивистский фактор Лоренца,

F — геометрический фактор, учитывающий угол пересечения пучков.

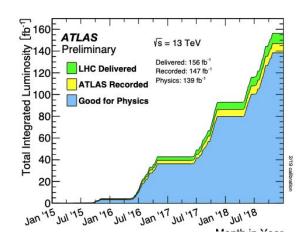
Значение светимости:

Высокая мгновенная светимость увеличивает вероятность наблюдения редких процессов.

Интегральная светимость определяет статистическую точность результатов эксперимента через соотношение:

$$N_{\rm exp} = \sigma \, \mathcal{L}_{\rm int}$$

где σ — сечение интересующего процесса.


Ключевые понятия LHC: Светимость

Рассмотрим стандартную формулу мгновенной светимости для коллайдера:

$$\mathcal{L} = \frac{N_b^2 \, n_b \, f_{rev}}{4\pi \, \sigma_x \, \sigma_y} \, F,$$

где:

- $N_b = 1.15 \times 10^{11}$ число протонов в одном bunch,
- $n_b = 2808$ число bunch'ей в пучке,
- $f_{rev} = 11245 \, Hz$ частота оборотов пучка (примерно 11,245 к Γ ц),
- $\sigma_x = \sigma_y = 16 \, \mu m = 16 \times 10^{-6} \, m$ поперечные размеры пучка,
- F=0.8 геометрический фактор, учитывающий угол пересечения пучков.

Подстановка значений:

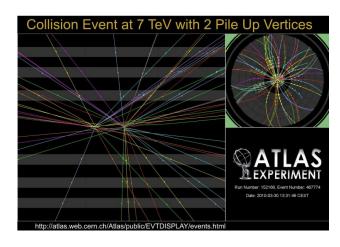
$$\mathcal{L} = \frac{(1.15 \times 10^{11})^2 \times 2808 \times 11245}{4\pi \times (16 \times 10^{-6})^2} \times 0.8.$$

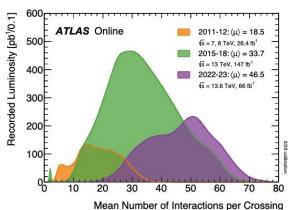
$$\mathcal{L} \approx 1.30 \times 10^{34} \times 0.8 \approx 1.04 \times 10^{34} \, cm^{-2} s^{-1}.$$

Ключевые понятия LHC: pile-up

Одновременное протекание нескольких событий в одном временном окне (один bunch crossing)

Сложности с идентификацией и реконструкцией событий, особенно при высокой интенсивности пучка


Виды Pile-up:


- In-time pile-up: события, происходящие в один такт (одновременно с основным столкновением).
- Out-of-time pile-up: события, "пересекающиеся"с соседними тактами, когда сигнал от предыдущего или последующего столкновения влияет на измерения.
- Среднее число взаимодействий на один bunch crossing $\langle \mu \rangle$ рассчитывается по формуле:

$$\langle \mu \rangle = \frac{L_{bunch} \cdot \sigma_{inel}}{f_{rev}},$$

где:

- $-L_{bunch}$ мгновенная светимость на один bunch,
- σ_{inel} сечение непругих pp-взаимодействий,
- $-f_{rev}$ частота оборотов пучка.

